Indiana State Mathematics Contest 2015

Algebra II/Integrated Math II

Do not open this test booklet until you have been advised to do so by the test proctor.

This test was prepared by faculty at **Butler University**

Next year's math contest date: Saturday, April 23, 2016

Algebra II/Integrated Math II

1) Multiply and simplify: $\frac{3x^2+5x-2}{x^2-4} \cdot \frac{3x^2-12}{12x-4}$ A) $\frac{3x+6}{4}$ B) $\frac{3}{4}$ C) $\frac{(5x-2)(x-3)}{16}$ D) $\frac{9x^4+15x^3-44x^2-66x+24}{4(x+2)(x-2)(x-1)}$ E) none of these

2) Solve for *x* and *y* and express your answer as the sum of *x* and *y*.

- $\frac{12}{x} \frac{12}{y} = 7 \qquad \qquad \frac{3}{x} + \frac{4}{y} = 0$ A) 1 B) 2 C) -2 D) -1 E) -12
- 3) Find the indicated infinite sum. $\sum_{n=0}^{\infty} 4\left(\frac{1}{4^n}\right)$
 - A) $\frac{16}{3}$ B) 3 C) 1 D) $\frac{62}{3}$ E) 4

4) Given
$$f(x) = \frac{x^2 - x}{x + 1}$$
, find $f(1 + i)$.

A) $\frac{1+3i}{5}$ B) $\frac{-1+3i}{3}$ C) $\frac{-1+3i}{5}$ D) -1+3i E) none of these

5) Find the interval(s) on the Real number line for which the radicand is greater than 0 for $\sqrt[4]{81-3x^2}$.

A) (3,3) B) [3,3] C) $[-3\sqrt{3}, 3\sqrt{3}]$ D) $x = \pm 3$ E) $(-3\sqrt{3}, 3\sqrt{3})$

6) For $\frac{x^2}{36} + \frac{y^2}{64} = 1$, the equation of an ellipse, find one of the foci.

A) $(0, 3\sqrt{10})$ B) (0, 4) C) $(0, 2\sqrt{7})$ D) (6, 0) E) None of these

- 7) What is the y-intercept of the line that passes through the point (1, 0) and is perpendicular to the line with the equation x + 2y 3 = 0.
- A) (0,-1) B) (0,0) C) (0,-2) D) $\left(0,-\frac{3}{2}\right)$ E) (2,0)
- 8) The sum of two numbers is 25. The sum of their squares is 313. What is the difference between the two solutions?
 - A) 5 B) 4 C) 3 D) 2 E) 1
- 9) If x + y = z and x = y, then all of the following are true except:
 - I. 2x + 2y = 2zII. x - y = 0IV. $x = \frac{z}{2}$ V. z - y = 2xIII. x - z = y - z
 - A) I B) II C) III D) IV E) V
- 10) Solve the inequality $\frac{x+2}{x-1} \leq 2$.
 A) (-∞, 1) ∪ [4,∞) B) (-∞, 1] ∪ (4,∞) C) (-∞, 1) ∪ (4,∞)
 D) all Reals except x = 1 E) none of these
 11) Evaluate $\sqrt{-36} \left(\sqrt{-9} + \frac{\sqrt{12}}{\sqrt{-27}} \right)$.
 A) 14 B) $\frac{52}{3}$ C)-22 D) -14 E) none of these
 12) Solve $8^{4t-2} = 32^{t+1}$.
 A) 6 B) $\frac{11}{7}$ C) 0 D) 4.144 E) no solution

13) Find the domain of the function $f(x) = \frac{x-2}{x+5} - \frac{4}{\sqrt{3-x}}$.

- A) $x > 3, x \neq 5$ B) All reals, $x \neq 3, 5$ C) x < 3D) All reals, $x \neq 5$ E) $x < 3, x \neq -5$
- 14) Simplify $\left(\frac{x^{-1/2}y^{3/4}}{y^{-5/4}}\right)^4$. A) x^2y^8 B) $\frac{y^8}{x^2}$ C) $\frac{1}{x^2y^2}$ D) $\frac{x^{-2}}{y^{-8}}$ E) none of these
- 15) If $a * b = \frac{a-b}{a+b}$, find 2 * (3 * 1). A) $\frac{3}{5}$ B) $\frac{1}{3}$ C) $-\frac{3}{2}$ D) 1 E) 6
- 16) Identify the numerator of the repeated decimal 1.185185... when written as a rational number in the form $\frac{a}{b}$.

A) 999 B) 1184 C) 1000 D) 1851 E) 1185

17) A combination lock will open when the right order of 3 numbers (from 1-40 inclusive) is selected. How many different settings are possible?

A) 59,280 B) 9880 C) 64,000 D) 120 E) 117

18) If
$$f(x) = \frac{5}{2x} + 7$$
, find $f^{-1}(0)$ if possible.
A) 4 B) -5/14 C) 33/5 D) $\frac{23}{2}$ E) not possible
19) Solve $x + 2\sqrt{x - 1} = 0$.
A) 2 B) 1 C) 1, 2 D) 0 E) no solution

Butler University

4/25/2015

- 20) Given the graph of the function f(x), what would the graph of f(x + 2) 3 look like?
 - A) same shape, moved down 2 and to the left 3
 - B) same shape, moved down 3 and to the left 2
 - C) same shape, moved up 2 and to the right 3
 - D) same shape, moved up 3 and to the right 2
 - E) same shape, moved down 3 and to the right 2
- 21) At noon Tom left his house and drove at a constant speed of 25mph to his friend Ann's house which is 38 miles away. Twelve minutes after Tom left his house, Ann left her house and drove at a constant speed of 35mph towards Tom's house. What time would they meet?
 - A) 12:15 B) 12:20 C) 12:35 D) 12:45 E) 1:00
- 22) Find the roots of $x^2 + 4x + 13 = 0$.
 - A) $-2 \pm 3i$ B) 1, -5 C) $-2 \pm 6i$ D) -1, 5 E) none of these

23) The total resistance, R, of two resistors, A and B, connected in parallel is given by the formula

$$\frac{1}{R} = \frac{1}{A} + \frac{1}{B}.$$
 Solve for *B*.
A) $\frac{1}{R} - A$ B) $\frac{RA}{R-A}$ C) $R - A$ D) $\frac{RA}{A-R}$ E) none of these

- 24) The mean of a set of 10 numbers is 40. One number was incorrectly recorded as 20 instead of 2. What should be the corrected mean?
 - A) 18 B) 38.2 C) 38 D) 22.8 E) none of these

25) If $f(x) = x^2 - 2$ and g(x) = 2x + 2, find $f\left(g\left(f\left(\frac{1}{2}\right)\right)\right)$. A) $\frac{1}{2}$ B) $\frac{1}{4}$ C) 1 D) 2 E) 4

Butler University

4/25/2015

26) For which numbers is a number minus its square positive?

A)
$$(0,1)$$
 B) $(-\infty,0) \cup (1,\infty)$ C) $(0,\infty)$ D) $(-\infty,0] \cup [1,\infty)$ E) $(-\infty,0)$

27) Find the remainder when $x^3 - x^2 - 14x + 1$ is divided by x - 4.

A) 9 B) 1 C) -23 D) -7 E) none of these

28) Find $\log_4\left(\frac{c}{a}\right) - \log_4\left(\frac{b}{a}\right) + \log_4\left(\frac{b}{c}\right)$.

A) 1 B) 0 C) 4 D) $\frac{c^2-bc+ab}{ac}$ E) undefined

29) Find the center and radius of the circle $x^2 - 6x + y^2 + 8y = 11$.

A) (-6, 8) and $\sqrt{11}$ B) (-3, 4) and 6C) (3, -4) and 36D) (3, -4) and 6E) none of these

30) If the number written in base 3 is 210100, how is the preceding number written?

A) 110100	B) 210000	C) 210021	D) 210099	E) 210022
-----------	-----------	-----------	-----------	-----------

31) $(x - 2y + z)^2 =$ A) $x^2 - 4y^2 + z^2$ B) $x^2 + 4y^2 + z^2$ C) $x^2 + 4y^2 + z^2 - 4xy + 2xz - 4yz$ D) $x^2 + 4y^2 + z^2 + 4xy - 2xz - 4yz$ E) none of these

32) Rationalize the denominator of
$$\frac{3-\sqrt{x}}{4+\sqrt{x}}$$
.

A)
$$\frac{12-7\sqrt{x}+x}{16-x}$$
 B) $\frac{12+x}{16-x}$ C) $\frac{3-x}{4+x}$ D) $\frac{12-\sqrt{x}+x}{4-x}$ E) $\frac{9-x}{12+7\sqrt{x}+x}$

33) Assume dog-birds have 2 feet and 2 heads, but cat-birds have 4 feet and 1 head. Looking into a cage of dog-birds and cat-birds, you count 36 feet and 24 heads. How many birds are in the cage?

A) 12 B) 13 C) 14 D) 15 E) 16

- 34) Suppose the surface area of a sphere equals twice the numerical value of its volume. What is the sphere's radius?
 - A) 0.75 B) 2 C) 1.5 D) 3 E) 1
- 35) Solve $\ln x^2 = (\ln x)^2$.
 - A) 1 B) $1, e^2$ C) $0, e^2$ D) e^2 E) no solution
- 36) If 80 mg of a radioactive substance decays to 5 mg in 8 minutes, find the half-life in minutes of the substance.
 - A) 8 B) 4 C) 1 D) 3 E) 2