Indiana State Mathematics Contest

2018

Algebra II/Integrated Math III

ICTM Algebra II 2018

1. Simplify the following expression: $((-2+5 i)+(-1+3 i))((5)-(1-3 i))$.
a. $12+41 i$
b. $-36+23 i$
c. $6+57 i$
d. $28+29 i$
e. $-6+17 i$
2. Simplify the following expression: $\sqrt[10]{x^{15}} \times \frac{\sqrt[27]{x^{18}}}{\sqrt[12]{x^{10}}}$.
a. $\sqrt[6]{x^{5}}$
b. $x \sqrt[3]{x}$
c. $x \sqrt[5]{x}$
d. $\frac{1}{\sqrt[6]{x^{5}}}$
e. $\sqrt[4]{x^{3}}$
3. If a and b are solutions to $\frac{4}{x-2}-\frac{3}{x+3}=1$, find $a b$.
a. 24
b. -24
c. 30
e. No solutions exist
d. Only one solution exists
4. Simplify the expression: $\left(\frac{\left(x^{2} y z^{0}\right)^{3}}{x^{4} y^{5}}\right)^{-2}$.
a. $\frac{y^{4}}{x^{4}}$
b. $\frac{x y}{z^{3}}$
c. $x^{2} y^{2}$
d. $-\frac{x^{2}}{y^{2}}$
e. $-\frac{x^{4} z^{6}}{y^{4}}$
5. What is the remainder when $3 x^{2}-4 x+8$ is divided by $x-2$?
a. 28
b. -28
c. 12
d. -4
e. 20
6. Evaluate: $\sum_{k=7}^{12}(3 k-2)$.
a. 171
b. 181
c. 161
d. 159
e. 183
7. Which of the following are functions?
I.

II. $\frac{3}{x^{2}+1}+4 y=5$
III.

\boldsymbol{x}	\boldsymbol{y}
$\mathbf{1}$	3
$\mathbf{2}$	1
3	4
4	1

a. I and II
b. I and III
c. I, II, and III
d. II and III
e. II
8. If $f(x)=x^{2}, g(x)=\frac{2}{x}$ and $h(x)=x+3$, find $g(h(f(x)))$.
a. $\frac{4}{x^{2}}+3$
b. $\frac{2}{x^{2}}+3$
c. $\frac{4}{(x+3)^{2}}$
d. $\left(\frac{2}{x}+3\right)^{2}$
e. $\frac{2}{x^{2}+3}$
9. If $f^{-1}(x)=\frac{3 x-2}{x+5}$, for what value(s) of x is $f(x)$ not defined?
a. $\frac{5}{3}$
b. -2
c. $\frac{2}{3}$
d. -5
e. 3
10. If the graph of the function $y=2 * 2^{x}-2$ is reflected across the line $y=x$, which of the following points would not appear on the graph?
a. $(6,2)$
b. $(-2,-1.5)$
c. $(2,1)$
d. $(0,0)$
e. $(-1,-1)$
11. What transformations must be done to $f(x)=x^{5}$ to turn it into $\left(\frac{x}{2}\right)^{5}-4$?
a. Shrink the graph of $f(x)$ vertically by a factor of 2 and shift it right 4 .
b. Shrink the graph of $f(x)$ horizontally by a factor of 2 and shift it right 4 .
c. Stretch the graph of $f(x)$ vertically by a factor of 2 and shift it down 4.
d. Stretch the graph of $f(x)$ horizontally by a factor of 2 and shift it down 4 .
e. None of the above.
12. Consider a circle with radius 5 centered at the origin and a line with a slope of 3 and a y-intercept of 5 . If the intersection points of these two figures are (a, b) and (c, d), find $(a c+b d)$.
a. 0
b. -2
c. -20
d. -12
e. These figures do not intersect at exactly two points.
13. If a, b, and c are numbers such that the system of linear equations below has infinitely many solutions, and if $c \neq 0$, find $\frac{a+b}{c}$.

$$
\begin{aligned}
& 3 x+2 y=0 \\
& a x+b y=c
\end{aligned}
$$

a. 4
b. $-\frac{2}{3}$
c. $\frac{3}{2}$
d. $\frac{5}{8}$
e. No such values of
a, b and c exist
14. If the point (a, b, c) is a solution to the system of linear equations below, find $a * b * c$.

$$
\begin{gathered}
x+y+z=6 \\
2 x+3 y+2 z=15 \\
3 x+4 y+4 z=23
\end{gathered}
$$

a. 0
b. 6
c. 72
d. -42
e. No such values of a, b and c exist
15. At the Historic Artcraft Theater in Franklin, tickets are sold as senior, child, or general admission. If a family buys 1 general ticket and 3 child tickets, it costs them $\$ 14$. If another family buys 2 senior and 2 child tickets, it costs them $\$ 14$. If a third family buys 1 senior and 2 general tickets, it also costs them $\$ 14$. Suppose a family wants to buy 2 senior, 2 child, and 2 general tickets. How much will it cost them?
a. \$18
b. $\$ 22$
c. $\$ 24$
d. \$28
e. $\$ 30$
16. The height of a ball t seconds after it was kicked is given in the table below. Use this information to determine which quadratic equation most accurately models the ball height $h(t)$ at time t.

Time \boldsymbol{t} (in seconds)	Height $\boldsymbol{h}(\boldsymbol{t}$) (in feet)
$\mathbf{0}$	0
$\mathbf{1}$	24
2	16

a. $h(t)=-16 t^{2}+40 t$
b. $h(t)=-9.8 t^{2}+33.8 t$
c. $h(t)=-32 t^{2}+56 t$
d. $h(t)=-2 t^{2}+26$
e. $h(t)=-12 t^{2}+36 t$
17. If the equation $y=\frac{x^{2}}{2}-2 x+7$ were rewritten in the form $y=a(x-h)^{2}+k$ with appropriate values for a, h, and k, which of the following expressions is largest?
a. $k * h * a$
b. $k^{h^{a}}$
c. $a-h+k$
d. $a+h-k$
e. $(k \div h) \div a$
18. For what value of a would the discriminant of $a x^{2}+6 x-4=0$ be equal to zero?
a. 9
b. $-1 \frac{1}{2}$
C. $1 \frac{1}{2}$
d. $-2 \frac{1}{4}$
e. $2 \frac{1}{4}$
19. Which of the following does not describe the same sequence?
a. A geometric sequence starting at 3 with a common ratio of 2 .
b. For his New Year's resolution, William decides to start with three push-ups on January $1^{\text {st }}$ and do two more push-ups each day.
c. An arithmetic sequence starting at 3 with a common difference of 2 .
d. $\quad r_{0}=3, r_{n}=r_{n-1}+2$
e. $a_{n}=3+2 n$
20. Which of the following graphs has a y-intercept at 2 , a horizontal asymptote of $y=0$, and approaches positive infinity as x approaches positive infinity?
a. $y=2(3)^{x}$
b. $y=2(3)^{-x}$
c. $y=-3(2)^{x}$
d. $y=-2\left(\frac{1}{3}\right)^{x}$
e. $y=3(2)^{x}$
21. The function $P(t)=500 *(.97)^{t}$ best describes which scenario?
a. There are 500 velociraptors on Isla Nubar, and their population is growing by 97% a year.
b. There are 97 troodons on Isla Nubar, and their population is growing by 500% a year.
c. There are 500 pteranodons on Isla Nubar, and their population is growing by 97 a year.
d. There are 500 dimetrodons on Isla Nubar, and their population is declining by 3\% a year.
e. There are 500 apatosauruses on Isla Nubar, and their population is declining by 97% a year.
22. At 8:00 am, Baljeet borrows $\$ 5$ from Bufford the Bully, who charges 25% interest compound hourly. If Baljeet waits to pay Bufford back until 3pm that same day, how much money does he owe?
a. \$9.77
b. $\$ 5.03$
c. $\$ 23.84$
d. \$37.46
e. \$17.94
23. Simplify: $10^{\log (5)}+3 \log (2)+2 \log (5)-\frac{1}{2} \log (4)$.
a. 5
b. 7
c. $5+6 \log (5)$
d. $6+\log (2)$
e. $30 \log (10)$
24. Solve for x if $\log (x)+\log (x-15)=2$
a. -5
b. 5
c. 5 and 20
d. 20
e. no solutions exist
25. The four walls of a rectangular room are to be painted. The length of the room is two feet more than the height, and the width of the room is 4 feet less than twice the height. If the total surface area of the four walls minus a 3 ft . by 7 ft . door is 331 square feet, what is the volume of the room?
a. $960 f t^{3}$
b. $784 f t^{3}$
c. $630 \mathrm{ft}^{3}$
d. $498 f t^{3}$
e. $384 f t^{3}$
26. How many zeros does the following piecewise function have?

$$
f(x)=\left\{\begin{array}{cc}
4 x-2 & \text { if } x \leq 0 \\
x^{3}-x^{2}-6 x & \text { if } 0<x<4 \\
2 x^{2}+7 x-30 & \text { if } x \geq 4
\end{array}\right.
$$

a. 0
b. 1
c. 2
d. 3
e. 4
27. For a certain equation, x varies jointly with y^{2} and inversely with z, and if $y=8$ and $z=4$, then $x=8$. What must y be if $x=2$ and $z=9$?
a. 8
b. 36
c. 24
d. 4
e. none of these
28. The number of cricket chirps varies linearly with the room temperature. If the room temperature is $60^{\circ} \mathrm{F}$, the cricket will chirp 88 times per minute. If the room temperature is $57^{\circ} \mathrm{F}$, the cricket will chirp 82 times per minute. If $T(c)$ is the temperature for c chirps per minute, which of the following is an equation for $T(c)$?
a. $T(c)=\frac{1}{2} c+16$
b. $T(c)=2 c-32$
c. $T(c)=\frac{1}{3} c+40$
d. $T(c)=\frac{5}{9} c+32$
e. $T(c)=2 c+12$
29. The mean of a data set with eight values is 80 . If one of the data points is removed, the mean of the remaining data set becomes 84 . What is the value of the data point that was removed?
a. 48
b. 52
c. 56
d. 64
e. none of these
30. A jar contains 4 black and 6 red beads. A second jar contains 5 black and an unknown number of red beads. If, when you draw one bead from each jar the probability that you draw two beads of the same color is .55 , how many red beads are in the second jar?
a. 8
b. 10
c. 12
d. 15
e. 20
31. In how many different ways can you rearrange the letters in the word ALGEBRA ?
a. 5040
b. 2520
c. 1260
d. 840
e. 420
32. Simplify: $\frac{\frac{1}{x+1}+\frac{1}{x-1}}{\frac{1}{x+1}-\frac{1}{x-1}}$.
a. $1-x$
b. -1
c. x
d. 1
e. $-x$

