Indiana Council of Teachers of Mathematics State Mathematics Competition Pre-Algebra 2023

this test was prepared by: Indiana University Bloomington, Department of Mathematics

Answers

1. Correct answer: b

Solution: If the original rectangle had area $A=\ell w$ then by increasing the length by 10% and the width by 20% we have $A_{\text {new }}=(1.1 \cdot \ell) \cdot(1.2 \cdot w)=1.32 \cdot \ell w$ which is 32% larger than the original.
2. Correct answer: b

Solution: The largest four numbers are: $872,827,782,728$, hence $872-728=144$.
3. Correct answer: c

Solution: If Jane is x years old, the other siblings are $x-2$ and $x+3$ years old. Sum of their ages is $3 x+1=25$, i.e. $x=8$.
4. Correct answer: d

Solution: $\frac{3}{0.07}-\frac{2}{0.05}+\frac{1}{0.35}=3 /(7 / 100)-2 /(5 / 100)+1 /(35 / 100)=\frac{300}{7}-\frac{200}{5}+\frac{100}{35}=\frac{1500-1400+100}{35}=$ $\frac{200}{35}=\frac{40}{7}$ which is a reduced fraction as 40 is not divisible by 7 . Hence, for $n x$ to be an integer n must be divisible by 7 , and 7 is the only such number among the given ones.
5. Correct answer: d

Solution: Each octagon has 8 sides, thus 24 octagons have $24 \cdot 8=192$ sides. With 192 sides, we can make $192 / 3=64$ triangles since a triangle has 3 sides.
6. Correct answer: b

Solution: π is approximately 3.14 , and the circular arc that Claire walks is thus $\frac{3}{4} \cdot 2 \cdot 3.14=4.71$ miles long. Since the distance from A to B and B to C is 1 mile each, the total length of the walk is 6.71 miles.
7. Correct answer: d

Solution: Sam takes 15 minutes to go from his house to the store and back (excluding the 10 minutes spent in shopping). If d miles is the distance between his house and the store, time taken to go to the store is $d / 4 \mathrm{hr}$ and time taken to go back is $d / 2 \mathrm{hr}$. Therefore, $d / 4+d / 2=15 / 60$. Solving this gives $d=1 / 3$ miles.
8. Correct answer: a

Solution: $\left(1+\frac{1}{3}\right)\left(1+\frac{1}{5}\right)\left(1+\frac{1}{7}\right)\left(1+\frac{1}{9}\right)=\frac{4}{3} \cdot \frac{6}{5} \cdot \frac{8}{7} \cdot \frac{10}{9}=\frac{4 \cdot 2 \cdot 8 \cdot 2}{7 \cdot 9}=\frac{2 \cdot 8^{2}}{7 \cdot 9}$. Hence for $\frac{2 \cdot 8^{2}}{7 \cdot 9} \cdot x^{2}=\frac{2}{7}$ we must have $x^{2}=\frac{9}{8^{2}}$ and thus $x=\frac{3}{8}$.
9. Correct answer: c

Solution: Given five ingredients, call them here a, b, c, d, e, there are 10 ways to choose three of them, namely: $\{a, b, c\},\{a, b, d\},\{a, b, e\},\{a, c, d\},\{a, c, e\},\{a, d, e\},\{b, c, d\},\{b, c, e\},\{b, d, e\},\{c, d, e\}$.
10. Correct answer: b

Solution: $\sqrt{z}=\sqrt{10}<4, \frac{z^{2}}{1+z}=\frac{100}{11}>9, \frac{1+z}{z}=\frac{11}{10}=1.1, \frac{20}{z+2}=\frac{20}{12}<2, \frac{1}{z}=\frac{1}{10}=0.1$.
11. Correct answer: e

Solution: $(1.1)^{4}=1.4641$, therefore they pay 46.41% extra.
12. Correct answer: d

Solution: If the number 1 is the leading digit, when the other three can only be 122,212 , and 221 . Similarly, if 2 is th leading digit, then the other three can only be 112,121 , and 211 . Hence there are six such numbers.
13. Correct answer: c

Solution: Since the area of the cross-section is 3π, we know that the radius is $\sqrt{3}$. Plugging that into the volume formula, we can arrive at the volume of $4 \cdot \pi \cdot \frac{1}{3} \sqrt{3}^{3}=4 \cdot \pi \cdot \sqrt{3}=21.77 \mathrm{in}^{3}$.
14. Correct answer: a

Solution: Integers divisible by 7 : $7,14,21,28,35,42,49,56,63,70,77,84,91,98$.
Note that $21,42,63,84$ are divisible by 3 .
This leaves us with $7,14,28,35,49,56,70,77,91,98$.
15. Correct answer: d

Solution: Sum of the first five scores is $95 \cdot 5=475$. We want the average of the six scores to be 90 , i.e. the sum of the six scores should be $90 \cdot 6=540$. Score needed on the sixth test is thus $540-475=65$.
16. Correct answer: a

Solution: In order for $1 A 3+876$ to be a 4 -digit number one must have $A+7 \geq 10$, in which case $1 A 3+876=10 R 9$, where $A+7=10+R$. Hence $R=B$. We are looking for the largest A such that $10 B 9=10 R 9$ is divisible by 3 . We try $A=9$, which gives $R=6$, but the sum of the digits of $10 R 9=1069$ is 16 , which is not divisible by 3 . Then we try $A=8$, which gives $R=5$, and the sum of the digits of $10 R 9=1059$ is 15 , which is divisible by 3 , and so is 1059 . Hence $A=8$ is the sought-for number.
17. Correct answer: c

Solution: Using the midpoint formula we can see that $\frac{7+x}{2}=9$ and $\frac{y+3}{2}=-2$, which when solved give $x=11$ and $y=-7$. Then we have $11-(-7)=18$.
18. Correct answer: e

Solution: One solves for y and obtains $y=\frac{2 x-4}{14}=\frac{x-2}{7}$. Hence $x-2$ must be divisible by 7 .
19. Correct answer: d

Solution: Suppose the bag contains $4 x, 5 x$ and $10 x$ coins of $25 \varnothing, 10 \varnothing$, and 5ℓ, respectively. The value of the bag is $4 x \cdot(0.25)+5 x \cdot(0.10)+10 x \cdot(0.05)=x \cdot(1+0.5+0.5)=x \cdot 2$ dollars, which is, by assumption, 50 . Therefore $x=25$, and there are $5 x=125$ coins of $10 ¢$ in the bag.
20. Correct answer: a

Solution: The inequality $x+y<x^{2}$ is equivalent to $y<x^{2}-x$. If $x \leq 1$, then $x^{2} \leq x$, hence $x^{2}-x \leq 0$, which is not possible since $y<x^{2}-x$ and $y>0$. None of the other inequalities must be true. (Since $3+4<3^{2}$ the inequality $y<1$ (b) must not be true, the inequality $x<1$ (c) must not be true, the inequality $y<x(\mathrm{~d})$ must also not be true. And because $2+\frac{1}{2}<2^{2}$, the inequality $1<y$ must not be true.)
21. Correct answer: b

Solution: A linear pair forms a 180° angle. We know that one angle is 38° larger than the other. We can write an equation to solve: $x+(x+38)=180$ and this gives us our smaller angle of 71°.
22. Correct answer: b

Solution: Notice the denominators are the sequence of squares. Meaning the sequence can be written, $1, \frac{1}{2^{2}}, \frac{1}{3^{2}}, \frac{1}{4^{2}}, \frac{1}{5^{2}}, \frac{1}{6^{2}}, \frac{1}{7^{2}}, \frac{1}{8^{2}}, \frac{1}{9^{2}}, \frac{1}{10^{2}}$. So the ".." represent the terms $\frac{1}{5^{2}}, \frac{1}{6^{2}}, \frac{1}{7^{2}}, \frac{1}{8^{2}}$.
23. Correct answer: c

Solution: Height of one book is $8 / 48=1 / 6$ feet or 2 inches. So a 16 inches high stack has 8 books.
24. Correct answer: a

Solution: If Tom has saved $\$ x$, then $18 / x=x / 8$, hence $x^{2}=8 \cdot 18=144$, and thus $x=12$.
25. Correct answer: d

Solution: Using the multiplication principle we have $3 \cdot 4 \cdot 2 \cdot 4=96$ options.
26. Correct answer: e

Solution: 105 has prime factorization $3 \cdot 5 \cdot 7$. So we have the set of divisors $\{1,3,5,7,3 \cdot 5,3 \cdot 7,5 \cdot 7,3$. $5,105\}=\{1,3,5,7,15,21,35,105\}$
27. Correct answer: b

Solution: With the same quantity of food, the farmer can feed 1 animal for $20 \times 8=160$ days (less animals, more days). So he can feed 32 animals for $\frac{20 \times 8}{32}=5$ days.
28. Correct answer: c

Solution: $A B$ is at least 10. And $A B$ cannot be 90 or greater, because then $C D=99-A B$ would be at most 9 . Hence $A B$ can take all values between 10 and 89 , which gives $89-10+1=80$ possible numbers for $A B$. Note that $C D$ is automatically determined by $A B$, and $C D \neq A B$, because 99 is odd.
29. Correct answer: a

Solution: If 7 apples are green and there are 15 total apples, the probability of randomly choosing a green apple is 7 out of 15 , hence $7 / 15$.
30. Correct answer: d

Solution: We have $y=x+1$ and $z=x+2$, hence $x+y+z=3 x+3=3(x+1)$. Of the given numbers only 102 is divisible by $3,102=3 \cdot 34$, and we have $x=33$ in this case.
31. Correct answer: c

Solution: Let x be the smallest integer and $x+6$ be the largest integer in the set. Since 6 is the only mode, it appears at least twice. Let the remaining integer be y (i.e., different from $x, x+6$ and 6 . Since 6 is the median, the only choices for the increasing order of the integers in the set is $x, y, 6,6, x+6$ or $x, 6,6, y, x+6$. As 6 is the mean, the sum of the five integers is $6 \times 5=30$, i.e. $x+6+6+y+x+6=30$ or $2 x+y=12$. Being the smallest integer, the only possibilities for x are $x=1,2,3,4,5,6$. If $x=6$, then $y=0$, which is not possible as the integers are positive. If $x=5$, then $y=2$, which is not possible as x is the smallest integer. If $x=4$, then $y=4$, which is not possible as 6 is the only mode. If $x=2$, then $y=8$ and the largest term is also $x+6=8$, which is not possible as 6 is the only mode. Finally, if $x=1$, then $y=10$, but the largest term is $x+6=7$, a contradiction. Therefore, $x=3$ is the only possible choice. This makes the smallest term 3 and the largest term 9, so that their sum is 12 .
32. Correct answer: e

Solution: There are 50 even integers between 2 and 100: $2 \cdot 1,2 \cdot 2,2 \cdot 3, \ldots, 2 \cdot 50=100$. If we subtract of each of these 1, we obtain the odd integers between 1 and $99: 2 \cdot 1-1=1,2 \cdot 2-1=3,2 \cdot 3-1=$ $5, \ldots, 2 \cdot 50-1=99$. Therefore, the sum of the even integers between 2 and 100 (including 2 and 100) exceeds the sum of the odd integers between 1 and 99 (including 1 and 99) by 50 .
33. Correct answer: d

Solution: We have $A=\frac{1}{2} b h=6$. By Pythogoras' theorem the hypotenuse is $\sqrt{3^{2}+4^{2}}=\sqrt{25}=5$. This gives $P=12$ and hence $2 A+P=24$.
34. Correct answer: b

Solution: $\frac{2}{a}+\frac{3}{b}=\frac{1}{c}$. Multiply the equation by $a \cdot b$ gives $2 b+3 a=\frac{a \cdot b}{c}$. Substitute using $a b=384$ and $c=4$ gives $2 b+3 a=\frac{384}{4}=96$.
35. Correct answer: e

Solution: The effective cost at supermarket X amounts to $0.90 \times 1.04=0.936$, that means savings of 6.4%. The effective cost at supermarket Y amount to $0.80 \times 1.17=0.936 \%$, that means savings of 6.4%. Hence there are no extra savings when shopping at supermarket Y.
36. Correct answer: a

Solution: $y=\sqrt{4^{2}-6}=\sqrt{10}$ and thus $x=\frac{21}{\sqrt{10}}$. This gives $x+y=\frac{21}{\sqrt{10}}+\sqrt{10}=9.80$.
37. Correct answer: c

Solution: Letting the radius of the small circle be r, the radius of the larger circle will be $2 r$. This makes the area of the smaller circle πr^{2} and the area of the larger circle $4 \pi r^{2}$.
38. Correct answer: b

Solution: Since a week has seven days, the eighth day, the 15 th day, and so on, will be a Monday if the first day that we count is a Monday. We have $100=98+2=14 \cdot 7+2$. Hence the 99th day is a Monday too, and the 100th day is a Tuesday.
39. Correct answer: e

Solution: Of the animals had as pets, only dogs and cats have fur. Therefore, there are 38 out of 50 students that meet that criterion, and $38 / 50=19 / 25$.
40. Correct answer: e

Solution: Write $a=3 a^{\prime}$ and $b=3 b^{\prime}$ with coprime integers a^{\prime} and b^{\prime}. Then $9 a^{\prime} b^{\prime}=36$, hence $a^{\prime} b^{\prime}=4$. If $a^{\prime}=1$, then $b^{\prime}=4$ and $a+b=3(1+4)=15$. If $a^{\prime}=b^{\prime}=2$, then $a=b=6$, and the greatest common divisor would be 6 .

