2022 Comprehensive Exam Solutions

1. One can test each factor, but since the coefficients are large, we can use the quadratic formula. If we set the given polynomial equal to 0 , the quadratic formula gives

$$
\begin{aligned}
x & =\frac{-362 y \pm \sqrt{362^{2} y^{2}-4 \cdot 144 \cdot 225 y^{2}}}{2 \cdot 144} \\
& =\frac{-362 y \pm \sqrt{1444 y^{2}}}{288} \\
& =\frac{-362 y \pm 38 y}{288}
\end{aligned}
$$

Now make use of the factor theorem:

$$
\begin{aligned}
& x=\frac{-362 y+38 y}{288}=-\frac{324}{288} y=-\frac{9}{8} y \quad \Rightarrow \quad 8 x+9 y \text { is a factor. (Answer) } \\
& x=\frac{-362 y-38 y}{288}=-\frac{400}{288} y=-\frac{25}{18} y \quad \Rightarrow \quad 18 x+25 y \text { is the other factor. }
\end{aligned}
$$

We obtain: $144 x^{2}+362 x y+225 y^{2}=(8 x+9 y)(18 x+25 y)$. Notice for this trinomial that the first and third terms are squares, but the trinomial itself is not a perfect square.
2. Let $u=x+\frac{4}{x}$. In terms of u we have

$$
\begin{aligned}
u^{2}+20 & =9 u \\
u^{2}-9 u+20 & =0 \\
(u-4)(u-5) & =0 \quad \Rightarrow \quad u=4 \text { or } u=5 .
\end{aligned}
$$

In the case $u=4$ we have

$$
\begin{aligned}
& x+\frac{4}{x}=4 \\
& x^{2}+4=4 x \\
& x^{2}-4 x+4=0 \\
&(x-2)^{2}=0 \quad \Rightarrow \quad x=2
\end{aligned}
$$

In the case $u=5$ we have

$$
\begin{aligned}
x+\frac{4}{x} & =5 \\
x^{2}+4 & =5 x \\
x^{2}-5 x+4 & =0 \\
(x-1)(x-4) & =0 \quad \Rightarrow \quad x=1 \quad \text { or } x=4 .
\end{aligned}
$$

Hence the solution set is $\{1,2,4\}$.

3. Solution 1

$$
\frac{8+i}{2-i}=\frac{8+i}{2-i} \cdot \frac{2+i}{2+i}=\frac{16+10 i-1}{4+1}=\frac{15+10 i}{5}=3+2 i .
$$

So

$$
\left(\frac{8+i}{2-i}\right)^{2}=(3+2 i)^{2}=9+12 i-4=5+12 i
$$

Solution 2

$$
\begin{aligned}
\left(\frac{8+i}{2-i}\right)^{2}=\frac{(8+i)^{2}}{(2-i)^{2}}=\frac{64+16 i-1}{4-4 i-1} & =\frac{63+16 i}{3-4 i} \\
& =\frac{63+16 i}{3-4 i} \cdot \frac{3+4 i}{3+4 i} \\
& =\frac{189+300 i-64}{9+16}=\frac{125+300 i}{25}=5+12 i .
\end{aligned}
$$

4. Let x be the amount of money Mary invested at 1.5% interest. She invested $2 x+800$ dollars at 2.25% interest. At the end of the year she made a total of $\$ 162$ dollars in interest:

$$
\begin{aligned}
.015 x+.0225(2 x+800) & =162 \\
.015 x+.045 x+18 & =162 \\
.06 x & =144 \\
x & =2400 \quad \Rightarrow \quad 2 x+800=5600 .
\end{aligned}
$$

So Mary invested $\$ 5600$ at 2.25% interest.
5. By making use of properties of logarithms we obtain the following equations:

$$
\begin{aligned}
& \log _{2} a+\log _{2} b=3 \\
& \log _{2} a-\log _{2} b=2
\end{aligned}
$$

Subtracting the second equation from the first gives $2 \log _{2} b=1 \Rightarrow \log _{2} b=\frac{1}{2}$.
6. Since the parabola has a horizontal axis of symmetry, its equation is of the form $(y-1)^{2}=4 p(x-2)$. It passes through the point $(7,-4)$, so this point satisfies the equation:

$$
(-4-1)^{2}=4 p(7-2) \quad \Rightarrow \quad(-5)^{2}=4 p \cdot 5 \quad \Rightarrow \quad 25=20 p \quad \Rightarrow \quad p=\frac{5}{4}
$$

The parabola opens to the right since $p>0$, so the focus is $\frac{5}{4}$ units to the right of the vertex at $\left(2+\frac{5}{4}, 1\right)=\left(\frac{13}{4}, 1\right)$.
7. Upon substituting, the equation $f(x)+f(x+1)=f(x+2)$ becomes

$$
\frac{1}{x(x+1)}+\frac{1}{(x+1)(x+2)}=\frac{1}{(x+2)(x+3)}
$$

Multiplying each term by $x(x+1)(x+2)(x+3)$ gives

$$
\begin{aligned}
(x+2)(x+3)+x(x+3) & =x(x+1) \\
x^{2}+5 x+6+x^{2}+3 x & =x^{2}+x \\
2 x^{2}+8 x+6 & =x^{2}+x \\
x^{2}+7 x+6 & =0 \\
(x+1)(x+6) & =0
\end{aligned}
$$

Note that x cannot be -1 since $f(-1)$ is not defined. So the answer is $\{-6\}$.
8. Write the equation in exponential form:

$$
\log _{8}\left(\log _{4} a\right)=2 \quad \Rightarrow \quad 8^{2}=\log _{4} a \quad \Rightarrow \quad \log _{4} a=64
$$

Putting this equation in exponential form gives $4^{64}=a$. Hence

$$
\log _{2} a=\log _{2} 4^{64}=64 \cdot \log _{2} 4=64 \cdot 2=128
$$

9. If we let X represent the number of times a 1 comes up, we want

$$
P(X \geq 2)=P(X=2)+P(X=3)+P(X=4)
$$

Each of these are binomial probabilities:

$$
\begin{aligned}
P(X \geq 2) & =\binom{4}{2}\left(\frac{1}{4}\right)^{2}\left(\frac{3}{4}\right)^{2}+\binom{4}{3}\left(\frac{1}{4}\right)^{3}\left(\frac{3}{4}\right)^{1}+\binom{4}{4}\left(\frac{1}{4}\right)^{4}\left(\frac{3}{4}\right)^{0} \\
& =6 \cdot \frac{1}{16} \cdot \frac{9}{16}+4 \cdot \frac{1}{64} \cdot \frac{3}{4}+\frac{1}{256}=\frac{67}{256}
\end{aligned}
$$

10. This is a product of complex conjugates. Use $(a+b i)(a-b i)=a^{2}+b^{2}$:

$$
\begin{aligned}
(2+\sqrt{3}+(2-\sqrt{3}) i)(2+\sqrt{3}-(2-\sqrt{3}) i) & =(2+\sqrt{3})^{2}+(2-\sqrt{3})^{2} \\
& =4+4 \sqrt{3}+3+4-4 \sqrt{3}+3 \\
& =14
\end{aligned}
$$

11. Let $f(x)=x^{3}+a x^{2}+b$. Since $f(x)$ is divisible by both $x+2$ and $x-4$, we have $f(-2)=0$ and $f(4)=0$:

$$
\begin{aligned}
& f(-2)=0 \quad \Rightarrow \quad-8+4 a+b=0 \quad \Rightarrow \quad 4 a+b=8, \\
& f(4)=0 \quad \Rightarrow \quad 64+16 a+b=0 \quad \Rightarrow \quad 16 a+b=-64 .
\end{aligned}
$$

Subracting the second equation from the first equation above gives

$$
-12 a=72 \Rightarrow a=-6 . \text { (Answer) }
$$

Substituting back gives $b=32$. You can now verify that

$$
f(x)=x^{3}-6 x^{2}+32=(x+2)(x-4)^{2} .
$$

12. In the picture, let x be the length of $C B$ and y be the length of $D B$:

$$
\begin{aligned}
& \tan \angle C A D=\frac{1}{5} \Rightarrow \frac{x}{d+y}=\frac{1}{5} \quad \Rightarrow \quad x=\frac{1}{5}(d+y) \\
& \tan \angle C D B=\frac{1}{3} \quad \Rightarrow \quad \frac{x}{y}=\frac{1}{3} \quad \Rightarrow \quad x=\frac{1}{3} y
\end{aligned}
$$

This gives the equation

$$
\frac{1}{5}(d+y)=\frac{1}{3} y
$$

Now solve for y. I'll first clear fractions by multiplying both sides by 15 :

$$
\begin{aligned}
3(d+y) & =5 y \\
3 d+3 y & =5 y \\
3 d & =2 y \quad \Rightarrow \quad y=\frac{3 d}{2}
\end{aligned}
$$

Finally,

$$
x=\frac{1}{3} y \quad \Rightarrow \quad x=\frac{1}{3} \cdot \frac{3 d}{2}=\frac{1}{2} d .
$$

13. The circle that passes through the three given points is the circumcircle of the triangle with those three points as its vertices. The perpendicular bisectors of the sides of a triangle are concurrent in the circumcenter. The midpoint of the side with vertices $(-6,0),(8,0)$ is $\left(\frac{-6+8}{2}, 0\right)=(1,0)$, so the line $x=1$ is a perpendicular bisector of this side. The side with endpoints $(8,0)$ and $(0,-4)$ has slope $m=\frac{-4-0}{0-8}=\frac{1}{2}$, so a line perpendicular to this side would have slope -2 . The midpoint of this side is $\left(\frac{8}{2},-\frac{4}{2}\right)=(4,-2)$, so the perpendicular bisector of the side with vertices $(-6,0),(8,0)$ is given by

$$
y+2=-2(x-4)
$$

The circumcenter is the intersection of the above line with the line $x=1$:

$$
y+2=-2(1-4) \quad \Rightarrow \quad y+2=6 \quad \Rightarrow \quad y=4
$$

So the circumcenter is $(1,4)$. The radius of the circle that passes through the given three points is found by finding the distance from the center to any of the given points:

$$
\begin{aligned}
r & =d((1,4),(-6,0)) \\
& =\sqrt{(-6-1)^{2}+(0-4)^{2}} \\
& =\sqrt{(-7)^{2}+(-4)^{2}} \\
& =\sqrt{49+16} \\
& =\sqrt{65} .
\end{aligned}
$$

14. By the Law of Cosines,

$$
\begin{aligned}
& (x-8)^{2}=(x+3)^{2}+x^{2}-2(x+3) x \cos \theta \\
& (x-8)^{2}=(x+3)^{2}+x^{2}-2(x+3) x \cdot \frac{4}{5}
\end{aligned}
$$

Multiplying everything by 5 gives

$$
\begin{aligned}
5(x-8)^{2} & =5(x+3)^{2}+5 x^{2}-8 x(x+3) \\
5\left(x^{2}-16 x+64\right) & =5\left(x^{2}+6 x+9\right)+5 x^{2}-8 x^{2}-24 x \\
5 x^{2}-80 x+320 & =5 x^{2}+30 x+45-3 x^{2}-24 x \\
-80 x+320 & =-3 x^{2}+6 x+45 \\
3 x^{2}-86 x+275 & =0 \\
(x-25)(3 x-11) & =0
\end{aligned}
$$

This gives $x=25$ or $x=\frac{11}{3}$. But if $x=\frac{11}{3}$ then $x-8=-\frac{13}{3}$, which is not possible. Hence $x=25$.
15. It's easiest to see what this equals if we write out each sum:

$$
\begin{gathered}
\sum_{k=1}^{n}(3 k-2)^{2}=1^{2}+4^{2}+7^{2}+\cdots+(3 n-2)^{2}, \\
\sum_{k=1}^{n}(3 k-1)^{2}=2^{2}+5^{2}+8^{2}+\cdots+(3 n-1)^{2}, \\
\sum_{k=1}^{n}(3 k)^{2}=3^{2}+6^{2}+9^{2}+\cdots+(3 n)^{2} .
\end{gathered}
$$

Adding these gives

$$
1^{2}+2^{2}+3^{2}+4^{2}+\cdots+(3 n)^{2}=\sum_{k=1}^{3 n} k^{2} .
$$

16. Since matrix multiplication is associative, this product can be computed two different ways.

Solution 1

$$
\begin{gathered}
A B=\left[\begin{array}{cc}
-1 & -2 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & -2 \\
1 & 4
\end{array}\right]=\left[\begin{array}{cc}
-3 & -6 \\
2 & 2
\end{array}\right], \\
A B A=\left[\begin{array}{cc}
-3 & -6 \\
2 & 2
\end{array}\right]\left[\begin{array}{cc}
-1 & -2 \\
1 & 1
\end{array}\right]=\left[\begin{array}{cc}
-3 & 0 \\
0 & -2
\end{array}\right] .
\end{gathered}
$$

Solution 2

$$
\begin{aligned}
B A & =\left[\begin{array}{cc}
1 & -2 \\
1 & 4
\end{array}\right]\left[\begin{array}{cc}
-1 & -2 \\
1 & 1
\end{array}\right]=\left[\begin{array}{cc}
-3 & -4 \\
3 & 2
\end{array}\right], \\
A B A & =\left[\begin{array}{cc}
-1 & -2 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
-3 & -4 \\
3 & 2
\end{array}\right]=\left[\begin{array}{cc}
-3 & 0 \\
0 & -2
\end{array}\right] .
\end{aligned}
$$

17. Let M denote the event "Quiz given on Monday" and F denote the event "Quiz given on Friday." Let M^{\prime}, F^{\prime} denote their complements. Events M and F are independent with $P(M)=\frac{2}{3}$ and $P(F)=\frac{3}{4}$. The question is asking for a conditional probability:

$$
\begin{aligned}
P(F \mid \text { exactly one quiz }) & =\frac{P(F \text { and exactly one quiz })}{P(\text { exactly one quiz })} \\
& =\frac{P\left(M^{\prime} \cap F\right)}{P\left(M \cap F^{\prime}\right)+P\left(M^{\prime} \cap F\right)} \\
& =\frac{\frac{1}{3} \cdot \frac{3}{4}}{\frac{2}{3} \cdot \frac{1}{4}+\frac{1}{3} \cdot \frac{3}{4}} \\
& =\frac{\frac{3}{12}}{\frac{5}{12}} \\
& =\frac{3}{5}
\end{aligned}
$$

18. Start by completing the square to put the equation in standard form:

$$
\begin{aligned}
16 x^{2}+64 x-9 y^{2}+18 y & =89 \\
16\left(x^{2}+4 x\right)-9\left(y^{2}-2 y\right) & =89 \\
16\left(x^{2}+4 x+4\right)-9\left(y^{2}-2 y+1\right) & =89+16 \cdot 4-9 \cdot 1 \\
16(x+2)^{2}-9(y-1)^{2} & =144 \\
\frac{(x+2)^{2}}{9}-\frac{(y-1)^{2}}{16} & =1 .
\end{aligned}
$$

The center of the hyperbola is at $(-2,1)$. For a hyperbola in the standard form

$$
\frac{\left(x-x_{1}\right)^{2}}{a^{2}}-\frac{\left(y-y_{1}\right)^{2}}{b^{2}}=1
$$

the asymptotes pass through the center $\left(x_{1}, y_{1}\right)$ and have slope $m= \pm \frac{b}{a}$. In this problem $a=3$ and $b=4$, so the equations of the asymptotes are

$$
y-1= \pm \frac{4}{3}(x+2)
$$

19. Since the triangle is isosceles, an altitude to the base will divide the triangle into two congruent right triangles:

From the picture, $\tan 22.5^{\circ}=\frac{h}{b / 2} \Rightarrow h=\left(\frac{b}{2}\right) \tan 22.5^{\circ}$. So the area of the triangle is

$$
A=\frac{1}{2} b h=\frac{1}{2} \cdot \frac{b}{2} \cdot \tan 22.5^{\circ}=\left(\frac{\tan 22.5^{\circ}}{4}\right) b^{2}
$$

We can use one of the half-angle formulas for tangent to compute $\tan 22.5^{\circ}$:

$$
\tan \frac{\theta}{2}=\frac{\sin \theta}{1+\cos \theta} \quad \text { or } \quad \tan \frac{\theta}{2}=\frac{1-\cos \theta}{\sin \theta} .
$$

Using the second formula,

$$
\begin{aligned}
\tan 22.5^{\circ} & =\frac{1-\cos 45^{\circ}}{\sin 45^{\circ}} \\
& =\frac{1-\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}} \\
& =\left(1-\frac{1}{\sqrt{2}}\right) \cdot \sqrt{2} \\
& =\sqrt{2}-1
\end{aligned}
$$

It follows that the area of the given isosceles triangle is $\left(\frac{\sqrt{2}-1}{4}\right) b^{2}$.
20. By the formula for the inverse of a 2×2 matrix,

$$
A^{-1}=\frac{1}{1 \cdot 1-1 \cdot 2} \cdot\left[\begin{array}{cc}
1 & -1 \\
-2 & 1
\end{array}\right]=-1 \cdot\left[\begin{array}{cc}
1 & -1 \\
-2 & 1
\end{array}\right]=\left[\begin{array}{cc}
-1 & 1 \\
2 & -1
\end{array}\right]
$$

We also have

$$
c A+d I=c \cdot\left[\begin{array}{ll}
1 & 1 \\
2 & 1
\end{array}\right]+d \cdot\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
c+d & c \\
2 c & c+d
\end{array}\right]
$$

Setting $A^{-1}=c A+d I$ gives

$$
\begin{aligned}
c+d & =-1 \\
c & =1 \\
2 c & =2 \\
c+d & =-1 .
\end{aligned}
$$

We can conclude that $c=1$ and $d=-2$. It can be shown that if A is any invertible 2×2 matrix, then A^{-1} can be written in the form $c A+d I$ for some numbers c and d.
21. Solution 1 We can find the zeros of each factor by setting each factor to 0 and using the quadratic formula:

$$
\begin{aligned}
x^{2}-2 \sqrt{5} x-4=0 \Rightarrow x & =\frac{2 \sqrt{5} \pm \sqrt{(-2 \sqrt{5})^{2}-4 \cdot 1 \cdot(-4)}}{2} \\
& =\frac{2 \sqrt{5} \pm \sqrt{20+16}}{2} \\
& =\frac{2 \sqrt{5} \pm \sqrt{36}}{2} \\
& =\frac{2 \sqrt{5} \pm 6}{2} \\
& =\sqrt{5} \pm 3 .
\end{aligned}
$$

Note with the second factor that the only difference is the sign of the coefficient of x, so we have

$$
x^{2}+2 \sqrt{5} x-4=0 \quad \Rightarrow \quad x=-\sqrt{5} \pm 3
$$

We can reorder the zeros of the factors and then use sum and product to find a quadratic factor with the given zeros:

$$
(3+\sqrt{5})+(3-\sqrt{5})=6, \quad(3+\sqrt{5})(3-\sqrt{5})=9-5=4
$$

Quadratic Factor: $x^{2}-6 x+4$,

$$
(-3+\sqrt{5})+(-3-\sqrt{5})=-6, \quad(-3+\sqrt{5})(-3-\sqrt{5})=9-5=4
$$

Quadratic Factor: $x^{2}+6 x+4$.
Hence

$$
\left(x^{2}-2 \sqrt{5} x-4\right)\left(x^{2}+2 \sqrt{5} x-4\right)=\left(x^{2}-6 x+4\right)\left(x^{2}+6 x+4\right)
$$

Solution 2 Multiply it out, then factor:

$$
\begin{aligned}
\left(x^{2}-2 \sqrt{5} x-4\right)\left(x^{2}+2 \sqrt{5} x-4\right) & = \\
x^{4}+2 \sqrt{5} x^{3}-4 x^{2} & -2 \sqrt{5} x^{3}-20 x^{2}+8 \sqrt{5} x-4 x^{2}-8 \sqrt{5} x+16 \\
& =x^{4}-28 x^{2}+16 \\
& =\left(x^{4}+8 x^{2}+16\right)-36 x^{2} \\
& =\left(x^{2}+4\right)^{2}-(6 x)^{2} \\
& =\left(x^{2}+4-6 x\right)\left(x^{2}+4+6 x\right) \\
& =\left(x^{2}-6 x+4\right)\left(x^{2}+6 x+4\right) .
\end{aligned}
$$

22. Solution 1 Note the following:

$$
\begin{aligned}
20 x+23 y+26 z & =2(11 x+14 y+17 z)-(2 x+5 y+8 z) \\
& =2 \cdot 2020-2019 \\
& =2021
\end{aligned}
$$

Solution 2 We can solve the system of equations by putting it in matrix form and applying elementary row operations:

$$
\begin{aligned}
& {\left[\begin{array}{ccc|c}
2 & 5 & 8 & 2019 \\
11 & 14 & 17 & 2020
\end{array}\right] \rightarrow\left[\begin{array}{ccc|c}
2 & 5 & 8 & 2019 \\
1 & -11 & -23 & -8075
\end{array}\right] } \\
& \rightarrow\left[\begin{array}{ccc|c}
0 & 27 & 54 & 18169 \\
1 & -11 & -23 & -8075
\end{array}\right] \rightarrow\left[\begin{array}{ccc|c}
0 & 1 & 2 & \frac{18169}{27} \\
1 & -11 & -23 & -8075
\end{array}\right] \\
& \rightarrow\left[\begin{array}{ccc|c}
0 & 1 & 2 & \frac{18169}{27} \\
1 & 0 & -1 & -\frac{18166}{27}
\end{array}\right]
\end{aligned}
$$

We obtain

$$
x-z=-\frac{18166}{27}, \quad y+2 z=\frac{18169}{27} .
$$

If we set $z=t$ (where $t \in \mathbb{R}$) the solution of the system of equations becomes

$$
x=t-\frac{18166}{27}, \quad y=-2 t+\frac{18169}{27}, \quad z=t .
$$

Substituting gives

$$
\begin{aligned}
20 x+23 y+26 z & =20\left(t-\frac{18166}{27}\right)+23\left(-2 t+\frac{18169}{27}\right)+26 t \\
& =-20 \cdot \frac{18166}{27}+23 \cdot \frac{18169}{27} \\
& =\frac{54567}{27} \\
& =2021 .
\end{aligned}
$$

23. Solution 1 By the addition formula for sine,

$$
\begin{aligned}
\sin \left(x+\frac{\pi}{4}\right) & =\sin x \cdot \cos \frac{\pi}{4}+\cos x \sin \frac{\pi}{4} \\
& =\frac{1}{\sqrt{2}} \sin x+\frac{1}{\sqrt{2}} \cos x
\end{aligned}
$$

This gives

$$
\sin x+\cos x=\sqrt{2} \cdot \sin \left(x+\frac{\pi}{4}\right) .
$$

So the given equation becomes

$$
\sqrt{2} \cdot \sin \left(x+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2} \quad \Rightarrow \quad \sin \left(x+\frac{\pi}{4}\right)=\frac{1}{2}
$$

Now

$$
x \in[0, \pi] \Rightarrow 0 \leq x \leq \pi \Rightarrow \frac{\pi}{4} \leq x+\frac{\pi}{4} \leq \frac{5 \pi}{4}
$$

So if we let $\theta=x+\frac{\pi}{4}$, we want all values of θ in $\left[\frac{\pi}{4}, \frac{5 \pi}{4}\right]$ with $\sin \theta=\frac{1}{2}$. There is only one such value of θ :

$$
\theta=\frac{5 \pi}{6} \quad \Rightarrow \quad x=\frac{5 \pi}{6}-\frac{\pi}{4}=\frac{7 \pi}{12}
$$

Solution 2 Start by squaring both sides of the equation:

$$
\begin{aligned}
(\sin x+\cos x)^{2} & =\left(\frac{\sqrt{2}}{2}\right)^{2} \\
\sin ^{2} x+2 \sin x \cos x+\cos ^{2} x & =\frac{1}{2} \\
1+\sin 2 x & =\frac{1}{2} \quad \text { (used the double angle formula for sine) } \\
\sin 2 x & =-\frac{1}{2}
\end{aligned}
$$

Now if $x \in[0, \pi]$ then $2 x \in[0,2 \pi]$, so if we let $\theta=2 x$, we want all values of θ in $[0,2 \pi]$ with $\sin \theta=-\frac{1}{2}$. We obtain $\theta=\frac{7 \pi}{6}$ or $\theta=\frac{11 \pi}{6}$. This gives $x=\frac{7 \pi}{12}$ or $x=\frac{11 \pi}{12}$. However, squaring both sides of an equation can introduce extraneous solutions: $x=\frac{11 \pi}{12}$ will not be a solution since (by looking at the corresponding point on the unit circle)

$$
\frac{3 \pi}{4}<\frac{11 \pi}{12}<\pi \Rightarrow-\cos \frac{11 \pi}{12}>\sin \frac{11 \pi}{12} \Rightarrow \sin \frac{11 \pi}{12}+\cos \frac{11 \pi}{12}<0
$$

24. Let (a, b) be the coordinates of the point P that is described in the question. Recall that the distance from a point $\left(x_{1}, y_{1}\right)$ to the line with equation $A x+B y+C=0$ is given by the formula

$$
d=\frac{\left|A x_{1}+B y_{1}+C\right|}{\sqrt{A^{2}+B^{2}}} .
$$

Since P is 10 units from the line with equation $4 x+3 y-1=0$ we obtain

$$
\begin{aligned}
& \frac{|4 a+3 b-1|}{\sqrt{4^{2}+3^{2}}}=10 \\
& \frac{|4 a+3 b-1|}{\sqrt{25}}=10 \\
& |4 a+3 b-1|=50
\end{aligned}
$$

Since P lies on the line $2 x+3 y=9$ we also have

$$
2 a+3 b=9 \quad \Rightarrow \quad 3 b=9-2 a .
$$

Substituting into the above equation gives

$$
\begin{aligned}
|4 a+(9-2 a)-1| & =50 \\
|2 a+8| & =50
\end{aligned}
$$

This gives

$$
2 a+8=50 \quad \text { or } \quad 2 a+8=-50
$$

Hence

$$
a=\frac{42}{2}=21 \quad \text { or } \quad a=-\frac{58}{2}=-29 .
$$

Answer: $\{-29,21\}$ is the set of all possible x-coordinates of such a point P.
Note that $b=3-\frac{2}{3} a$, so

$$
a=-29 \Rightarrow b=\frac{67}{3}, \quad a=21 \Rightarrow b=-11
$$

So the possibilities for P are $\left(-29, \frac{67}{3}\right)$ and $(21,-11)$.
25. We need to consider each piece. For the first piece, to have $f(x) \geq 1$ we need:

$$
\begin{aligned}
x<2 \quad \text { and } \quad-\frac{3}{2} x^{2}+\frac{11}{2} x-2 & \geq 1 \\
-3 x^{2}+11 x-4 & \geq 2 \\
-3 x^{2}+11 x-6 & \geq 0 \\
(x-3)(-3 x+2) & \geq 0
\end{aligned}
$$

The solution set of the inequality $(x-3)(-3 x+2) \geq 0$ is $\left[\frac{2}{3}, 3\right]$. We have

$$
(-\infty, 2) \cap\left[\frac{2}{3}, 3\right]=\left[\frac{2}{3}, 2\right) .
$$

For the second piece we need:

$$
\begin{aligned}
& x \geq 2 \quad \text { and } \quad \frac{3}{2} x^{2}-\frac{13}{2} x+8 \geq 1 \\
& 3 x^{2}-13 x+16 \geq 2 \\
& 3 x^{2}-13 x+14 \geq 0 \\
&(x-2)(3 x-7) \geq 0
\end{aligned}
$$

The solution set of the inequality $(x-2)(3 x-7) \geq 0$ is $(-\infty, 2] \cup\left[\frac{7}{3}, \infty\right)$. We have

$$
[2, \infty) \cap\left((-\infty, 2] \cup\left[\frac{7}{3}, \infty\right)\right)=\{2\} \cup\left[\frac{7}{3}, \infty\right)
$$

So the set of all real numbers x such that $f(x) \geq 1$ is given by

$$
\left[\frac{2}{3}, 2\right) \cup\left(\{2\} \cup\left[\frac{7}{3}, \infty\right)\right)=\left[\frac{2}{3}, 2\right] \cup\left[\frac{7}{3}, \infty\right) .
$$

26. By the law of sines,

$$
\frac{\sin \theta}{25}=\frac{\sin (\pi-3 \theta)}{a} .
$$

Making use of the trigonometric identity $\sin (\pi-\alpha)=\sin \alpha$ with $\alpha=3 \theta$ gives

$$
\frac{\sin \theta}{25}=\frac{\sin 3 \theta}{a} \Rightarrow a=\frac{25 \sin 3 \theta}{\sin \theta}
$$

Making use of the addition formula for sine gives

$$
\begin{aligned}
\sin 3 \theta & =\sin (2 \theta+\theta) \\
& =\sin 2 \theta \cos \theta+\cos 2 \theta \sin \theta
\end{aligned}
$$

We are given $\cos \theta=\frac{4}{5}$. Since $\cos \theta>0$ and θ is an angle of a triangle, it must be the case that $0<\theta<\frac{\pi}{2}$. So $\sin \theta>0$ and we have (either by drawing a right triangle or using $\sin ^{2} \theta+\cos ^{2} \theta=1$) that $\sin \theta=\frac{3}{5}$. Applying double angle formulas gives

$$
\begin{aligned}
\sin 2 \theta & =2 \sin \theta \cos \theta \\
& =2 \cdot \frac{3}{5} \cdot \frac{4}{5}=\frac{24}{25} \\
\cos 2 \theta & =\cos ^{2} \theta-\sin ^{2} \theta \\
& =\left(\frac{4}{5}\right)^{2}-\left(\frac{3}{5}\right)^{2} \\
& =\frac{16}{25}-\frac{9}{25}=\frac{7}{25}
\end{aligned}
$$

Now make use of the above formula for $\sin 3 \theta$:

$$
\begin{aligned}
\sin 3 \theta & =\sin 2 \theta \cos \theta+\cos 2 \theta \sin \theta \\
& =\frac{24}{25} \cdot \frac{4}{5}+\frac{7}{25} \cdot \frac{3}{5} \\
& =\frac{117}{125}
\end{aligned}
$$

Using $a=\frac{25 \sin 3 \theta}{\sin \theta}$ gives

$$
a=\frac{25 \cdot \frac{117}{125}}{\frac{3}{5}}=\frac{117}{5} \cdot \frac{5}{3}=39
$$

27. Let l_{1} denote the line with equation $x+3 y=10, l_{2}$ denote the line with equation $2 x-y=-1$, and l_{3} denote the line with equation $5 x+y=22$. No pair of l_{1}, l_{2}, l_{3} are parallel, so these three lines will be the sides of a triangle in the plane. We just need to determine which side of each line contains the triangle. The intersection of lines l_{1} and l_{2} can be found by solving the system

$$
\begin{aligned}
& x+3 y=10 \\
& 2 x-y=-1 .
\end{aligned}
$$

Multiplying the second equation by 3 and adding it to the first gives $7 x=7$, so $x=1$. Substituting gives $y=3$, so the point of intersection of l_{1} and l_{2} is $(1,3)$. The intersection of lines l_{1} and l_{3} can be found by solving the system

$$
\begin{aligned}
& x+3 y=10 \\
& 5 x+y=22 .
\end{aligned}
$$

Multiplying the second equation by -3 and adding it to the first gives $-14 x=-56$, so $x=4$. Substituting gives $y=2$, so the point of intersection of l_{1} and l_{3} is $(4,2)$. The intersection of lines l_{2} and l_{3} can be found by solving the system

$$
\begin{aligned}
& 2 x-y=-1 \\
& 5 x+y=22 .
\end{aligned}
$$

Adding the two equations gives $7 x=21$, so $x=3$. Substituting gives $y=7$, so the point of intersection of l_{2} and l_{3} is $(3,7)$. The three points $(1,3),(4,2)$, and $(3,7)$ are the vertices of a triangle. Line l_{1} contains the vertices $(1,3)$ and $(4,2)$. The other vertex, $(3,7)$, needs to be part of the solution set, so we need $x+3 y \geq 10$. Line l_{2} contains the vertices $(1,3)$ and $(3,7)$. The other vertex, $(4,2)$, needs to be part of the solution set, so we need $2 x-y \geq-1$. Line l_{3} contains the vertices $(4,2)$ and $(3,7)$. The other vertex, $(1,3)$, needs to be part of the solution set, so we need $5 x+y \leq 22$.
28.

$$
2 \sqrt{25+10 \sqrt{x}}=\sqrt{10+2 \sqrt{x}}+\sqrt{50+22 \sqrt{x}}
$$

Square both sides to obtain

$$
\begin{aligned}
4(25+10 \sqrt{x}) & =10+2 \sqrt{x}+2 \sqrt{10+2 \sqrt{x}} \sqrt{50+22 \sqrt{x}}+50+22 \sqrt{x} \\
100+40 \sqrt{x} & =60+24 \sqrt{x}+2 \sqrt{10+2 \sqrt{x}} \sqrt{50+22 \sqrt{x}} \\
40+16 \sqrt{x} & =2 \sqrt{10+2 \sqrt{x}} \sqrt{50+22 \sqrt{x}} \\
20+8 \sqrt{x} & =\sqrt{10+2 \sqrt{x}} \sqrt{50+22 \sqrt{x}}
\end{aligned}
$$

Square again:

$$
\begin{aligned}
400+320 \sqrt{x}+64 x & =(10+2 \sqrt{x})(50+22 \sqrt{x}) \\
400+320 \sqrt{x}+64 x & =500+320 \sqrt{x}+44 x \\
20 x & =100 \\
x & =5 .
\end{aligned}
$$

(Note: It is possible to check that $x=5$ works).

