1. E			
2. B			
3. D			
4. C			
5. A			
6. B			
7. B			
8. E			
9. D			
10. B			
11. A			
12. D			
13. E			
14. B			
15. E			
16. D			
17. A			
18. B			
19. C			
20. C			
21. B			
22. D			
23. C			
24. C			
25. A			
26. D			
27. A			
28. B			
29. C			
30. E			
31. B			
32. B			
33. E			
34. D			
35. E			
36. C			
37. A			
38. B			
39. D			
40. E			

KEY for Algebra I/Integrated Math I Exam 2019

HIGHLIGHTED KEY for Algebra I/Integrated Math I Exam 2019 1. Solve the quadratic equation 2x ² = 5x + 3.						
(a) 1 and 3/2	(b) -1 and -3/2	(c) -5 and -1/2	(d) 1/2 and -3	(e) -1/2 and 3		
2. Solve the e	quation for m: 0.2(8 —	$(m) = \frac{1}{5}(10m + 3) - $	0.4			
(a) 11/7 many solutior	(b) 7/11 Is	(c) 13/11	(d) 11/13	(e) infinitely		
3. Find the pro	oduct: $(x - 3)^2(x + 3)^2$					
(a) 1	(b) $x^4 + 18x^2 + 81$	(c) x ⁴ - 81	(d) x ⁴ – 18x ² + 81	(e) x ⁴ + 81		
4. If $f(x) = x^3 - x^3$	2x + 1, find f(-2).					
(a) 13	(b) -11	<mark>(c)</mark> -3	(d) 11	(e) 3		
5 Find the ma	wimum v-value for the	$y_{araphy} = -2x^2 - 8x + 1$	15			
(a) 23 maximum	(b) -2	(c) -9	(d) 15	(e) no		
6. Solve the e	quation: $\sqrt{4x+3}+6$	= 10.				
(a) 1/4	<mark>(b) 13/4</mark>	(c) 8	(d) -1/8	(e) 23/8		
7. Solve the in (a) $-16 < x \le$ solution	$= \frac{1}{24} + \frac{1}{2} - x < 3x + \frac{1}{24} + \frac{1}{24} = \frac{1}{16} - \frac{1}{16} < x \le \frac{1}{24} + \frac{1}{2$	$\frac{3}{4} \le x + \frac{5}{6} \text{ for x.}$ $\frac{1}{24} \qquad \text{(c) } \frac{1}{24} < x \le \frac{1}{1}$	$\frac{1}{6}$ (d) $-\frac{1}{24} < x \le 1$	≤ <u>1</u> (e) no		
8. Simplify the (a) $3\sqrt[3]{x^6y^8}$ $3x^2y^2\sqrt[3]{3y^2}$	e root: $\sqrt[3]{81x^6y^8}$ (b) $3x^2 \sqrt[3]{3y^8}$	(c) $x^2 \sqrt[3]{81y^8}$	(d) $27x^2y^2\sqrt[3]{1}$	/ <mark>3y² (e)</mark>		

9. Solve for x: 2x(x	(– 7) = 3(2 – 5x).			
(a) 2 and -3/2 20/17	(b) $\frac{3\pm\sqrt{7}}{2}$	(c) $\frac{29\pm\sqrt{889}}{4}$	<mark>(d)</mark> -2 and 3/2	(e)
10. Simplify the ex	expression: $\frac{(2x^3y)(4x^{-2}y^3)}{16x^5y^0}$			
(a) 1	(b) $\frac{y^4}{2x^4}$	(c) $-\frac{y^4}{2x^4}$	(d) $\frac{y^4}{2x^4}$	(e)

 $-\frac{1}{x^4}$

11. The expres <mark>(a)</mark> (x ^{2a} + 3y ^l	$x^{4a} - 9y^{2b}$ is eq $y^{2a} - 3y^{b}$	uivalent to which of th (b) $(x^{2a} + 3y^b)^2$	e following: (c) $(x^{2a} - 3y^{b})$	²) ²	
(d) $(x^{2a} + 9y^{b})$	$(x^{2a}-9y^b)$	(e) $(x^{2a} - 9y^b)^2$			
12. Solve for a in the system of equations $\begin{cases} \frac{3}{5}a + 2b = b - 9\\ 6a + \frac{7}{5}b = 3a + 3 \end{cases}$					
(a) 25	(b) -18	(c) -45	(d) 15	(e) -18	

13. Find the equation of the line in general form with a slope perpendicular to line *m* and the same y-intercept as line *n*.

 $m: \frac{4}{3}x - \frac{2}{5}y = \frac{1}{2}$ n: 5y - 30 = 10x(a) 10/3x + y = -18 (b) x- 3y = 6 (c) 10x - 3y = -18 (d) 3x - 10y = -60 (e) 3x + 10y = 60

14. Andy, Claude, Edgar, Frida, Georgia, Henri, and Jackson sit at a circular table. How seating
arrangements can be made if Andy and Frida insist that they must sit next to each other?(a) 720(b) 8640(c) 4320(d) 1440(e) 5040

15. Solve the absolu	ite-value inequ	$ x_1 = x_2 + x_3 + x_4 + x_4$	-12.	
(a) -3/2 ≤ x ≤ 2	(b) x ≥ 2	(c) x ≤ -3/2 or x ≥ 2	(d) x ≤ -3/2	<mark>(e) no solution</mark>

	(1	$16^{-\frac{1}{4}}(27^{\frac{1}{3}})$		_
<mark>(a)</mark> 5/3	(b) 3/5	(c) 200/81	(d) 81/200	(e) 25/18
18 How m	any total rectangle	s can be found in the fo	llowing nicture?	
	** *			(e) infinitely
(a) 15 many	<mark>(b)</mark> 90	(c) 200	(u) 5040	(0)
(a) 15 many	<mark>(b)</mark> 90	(c) 200	(u) 3040	(0)
(a) 15 many 19. Simplif	<mark>(b)</mark> 90 ∕: 13(3 ⁻² + 4 ⁻¹) ⁻¹	(c) 200	(u) 3040	
(a) 15 many 19. Simplify (a) 1/36	<mark>(b)</mark> 90 y: 13(3 ⁻² + 4 ⁻¹) ^{−;} (b) 169/36	(c) 200 1 (c) 36	(d) 13/36	(e) 130
(a) 15 many 19. Simplifi (a) 1/36	<mark>(b)</mark> 90 γ: 13(3 ^{−2} + 4 ^{−1}) ^{−:} (b) 169/36	(c) 200 1 (c) 36	(d) 13/36	(e) 130
(a) 15 many 19. Simplif (a) 1/36 20. Determ	(b) 90 y: $13(3^{-2} + 4^{-1})^{-1}$ (b) 169/36 nine the domain for	(c) 200 (c) 36 (c) 36 (c) 36	(d) 13/36 $\frac{x-4}{(z-7)}$ in interval notatio	(e) 130 n.
(a) 15 many 19. Simplif• (a) 1/36 20. Determ (a) (−∞, 7)	(b) 90 y: $13(3^{-2} + 4^{-1})^{-1}$ (b) 169/36 hine the domain for) \cup (7, ∞)	(c) 200 (c) 36 (c) 36 (c) 36 (c) 36 (c) 40 (c) 40	(d) 13/36 (d) 13/36 $\frac{x-4}{(z-7)}$ in interval notatio (c) [4, 7) \cup (7, \propto	(e) 130 n.
(a) 15 many 19. Simplif (a) 1/36 20. Determ (a) (−∞, 7) (d) (7, ∞)	(b) 90 y: 13(3 ⁻² + 4 ⁻¹) ⁻¹ (b) 169/36 nine the domain for) ∪ (7,∞)	(c) 200 (c) 36 (c) 36 (c) 36 (c) 40 (c) 36 (c) 36 (c) 40 (c) 40	(d) 13/36 $\frac{x-4}{(z-7)}$ in interval notatio (c) [4, 7) \cup (7, \propto	(e) 130 n. o)
(a) 15 many 19. Simplif (a) 1/36 20. Determ (a) (−∞, 7) (d) (7, ∞)	(b) 90 y: $13(3^{-2} + 4^{-1})^{-3}$ (b) 169/36 ine the domain for) $\cup (7, \infty)$	(c) 200 (c) 36 (c) 36 (c) 36 (c) 36 (c) 36 (c) 4, 7 (c) 4, 7 (c) 4, 7 (c) 4, ∞)	(d) 13/36 $(\overline{x-4})$ in interval notatio (c) [4, 7) \cup (7, \propto	(e) 130 n. >)
(a) 15 many 19. Simplify (a) 1/36 20. Determ (a) $(-\infty, 7)$ (d) $(7, \infty)$ 21. Find the	(b) 90 y: $13(3^{-2} + 4^{-1})^{-3}$ (b) 169/36 ine the domain for) $\cup (7, \infty)$ e sum of the solution (b) 22/7	(c) 200 (c) 200 (c) 36 (c) 36 (c) 36 (c) 4, 7 (c) 4, 7 (c) 4, 7 (c) 5/7	(d) 13/36 $(\overline{x-4})$ in interval notatio (c) [4, 7) \cup (7, \propto	(e) 130 n. o)
(a) 15 many 19. Simplify (a) 1/36 20. Determ (a) $(-\infty, 7)$ (d) $(7, \infty)$ 21. Find the (a) 4	(b) 90 y: $13(3^{-2} + 4^{-1})^{-2}$ (b) 169/36 whithe the domain for) $\cup (7, \infty)$ e sum of the solution (b) 22/7	(c) 200 (c) 200 (c) 36 (c) 36 (c) 36 (c) 4, 7 (c) (4, 7) (c) (4, 7) (c) - ∞ , 4) \cup (4, 7) (c) - $3x$ + 5. (c) - $6/7$	(d) 13/36 $(x-4) = (c) = (4,7) \cup (7, \infty)$ (d) 34/7	(e) 130 n. o) (e) 1/3
(a) 15 many 19. Simplify (a) 1/36 20. Determ (a) $(-\infty, 7)$ (d) $(7, \infty)$ 21. Find the (a) 4	(b) 90 y: $13(3^{-2} + 4^{-1})^{-3}$ (b) 169/36 where the domain for) $\cup (7, \infty)$ the solution (b) 22/7 where the the solution (c) 22/7	(c) 200 (c) 36 (c) 36 (c) 36 (c) 36 (c) 36 (c) 4, 3 (c) -0, 4) \cup (4, 7) (c) [4, ∞) (c) -6/7 (c) -6/7 (c) -6/7	(d) 13/36 (c) 13/36 $(c) [4, 7) \cup (7, \infty)$ (d) 34/7 points (36, 17) and (-5)	(e) 130 n. (e) 1/3 (e) 1/3 734)?

24. Find the	distance between	the two points (-1, 7)) and (-3 <i>,</i> 15).	
(a) 4 2√15	(b) 68	<mark>(c)</mark> 2√17	(d) 10) (e)
25. Find the <mark>(a) -4</mark> positive	negative solution (b) $\frac{3-\sqrt{57}}{2}$	for the equation $\sqrt{a^2}$ (c) $\frac{3-\sqrt{65}}{2}$	-3a - 12 = 4 (d) -7	(e) All solutions are
26. How mai (a) 8	ny unique diagona (b) 6	ls can be drawn in a h (c) 21	nexagon? <mark>(d)</mark> 9	(e) 15
27. A mixtur fruit juices a mixed with 2 mixture?	e of fruit punch an nd the orange juic 20 pints of orange	d orange juice is crea e contains 60% natur juice. What is the cor	ited. The fruit punch al fruit juices. 10 pint icentration of fruit ju	contains 75% natural ts of fruit punch is ices in the resulting
<mark>(a) 65%</mark>	(b) 67.5%	(c) 62%	(d) 13.5%	(e) 6.5%
28. If Jeff tak long will it ta (a) 3 hours (e) 7	kes 6 hours to pain ake the two of thei <mark>(b) 3.5 h</mark> hours	t a bedroom and Rya n when working toge <mark>ours</mark>	n takes 8 hours to pa ther? Round to the r (c) 4 hours	aint a bedroom, how nearest half hour. (d) 4.5 hours

29. Find the median number of siblings for the students in a class, as shown in the bar graph below.

30. A college student's grade point average is found by summing the total number of grade points (multiply credits by a numerical value for the grade) and then dividing by the total number of credits. An "A" is considered 4.0, a "B" is 3.0, a "C" is 2.0, a "D" is 1.0, and an "F" is 0. If a student received the following grades, what is his grade point average? Round to the nearest tenth.

Course	Credits	Grade		
Calculus	4.0	А		
Biology	5.0	В		
Psychology	3.0	С		
History	2.0	В		
(a) 2.7	(b) 2.8		(c) 2.9	(c) 2.9 (d) 3.0

31. Find the area of the shape below. Round to the nearest whole number.

32. A ball is thrown from a height of 20 feet. The height *h* of the ball in feet *t* seconds after it has been thrown is given by $h(t) = -16t^2 + 80t + 20$. After how many seconds will the ball hit the ground? Round to the nearest hundredth. (a) 3.98 seconds (b) 5.24 seconds (c) 4.87 seconds (d) 5.71 seconds (e)

4.32 seconds (0) 5.24 seconds (0) 4.87 seconds (0) 5.71 seconds (e)

33. Find the 101 st terr	n in the pattern 1, 4, 7	, 10,		
(a) 3085	(b) 298	(c) 307	(d) 304	<mark>(e)</mark> 301

34. For the equation $4x^2 + 4x = 15$, which of the following is/are true:

I. The sum of the solutions is negative.

II. The product of the solutions is negative.

III. Exactly one of the solutions is a fraction.

(a) I only (b) II only (c) III only (c

(d) I and II only

(e) II and III only

35. Solve th (a) 169	the equation $7 - \sqrt{x} =$ (b) -36 and 36	$\sqrt{5\sqrt{x}-29}$. (c) no solution	(d) 36 and 169	<mark>(e) 36</mark>
For the rem	nainder of the test, as	sume all denominato	rs are non-zero.	
36. Solve th (a) -14/39 many soluti	the equation: $\frac{6x-1}{3x+5} = \frac{8x}{4x}$ (b) 14/39 froms	(c) -1 (c) -14/59	(d) 14/59	(e) Infinitely
	30			

37. Solve the	formula for C: $\frac{3C}{A+C}$	+B = 4B		
(a) $C = \frac{AB}{1-B}$	(b) $C = \frac{AB}{1+B}$	(c) $C = \frac{A-B}{B}$	(d) $C = \frac{3AB}{1-3B}$	(e) $C = \frac{AB}{3-B}$

38 Simplify the expression	<u>. 6</u> _	2	<u>3x+10</u>	
	x	<i>x</i> +2	x^2+2x	
(a) $\frac{-3x-14}{x^2+2x}$ (b)	1		(c) $\frac{x+2}{x^2+2x}$	(d) $\frac{x}{x+2}$
(e) $\frac{3}{x^2+2}$	r		x-+2x	<i>x</i> +2

39. Multiply and divide $\frac{2x^2-9x-5}{4x^2+4x+1} \cdot \frac{6x^2+3x}{2x^2-7x-15} \div \frac{8x}{4x+6}$. Write the answer in simplest form.					
(a) $\frac{12x^2}{4x^2+9}$	(b) $\frac{12x^2}{(2x+3)^2}$	(c) $\frac{3}{4x}$	(d) 3/4	ł	(e) $\frac{6x}{8}$
40. When dividing the polynomials $\frac{x^3 - 30x + 19}{x - 5}$, the remainder will be:					
(a) -44	(b) 44	(c) -106	(d) 6	<mark>(e) -6</mark>	

14. Andy, Claude, Edgar, Frida, Georgia, Henri, and Jackson sit at a circular table. How many seating arrangements can be made if Andy and Frida insist that they must sit next to each other.

(a) 720 (b) 8640 (c) 4320 (d) 1440 (e) 5040

Solution: There are 7 people, but we are going to treat Andy and Frida as one person to start this problem. That means that there are really "6 seats." I have labeled the chairs as seat #1, 2, 3, 4, 5, and 6. Pick any seat to start with (shown by the cut), and you think of them as one long row of 6 seats. For this problem, I'll start with seat #1. We know that there are 6! = 720 ways for the 6 people to sit. However, every ordering we just found could have started with any seat, not just seat #1. So that means we must multiply by 6. This gives 4,320 possibilities. Finally, Andy and Frida can sit with Andy on the left and Frida on the right (AF), or Andy on the right and Frida on the left (FA). Therefore, we double our 4,320 possibilities, giving 8,640 arrangements.

