

Indiana State Math Contest 2017

Geometry

This test was prepared by faculty at Indiana University - Purdue University Columbus

Do not open this test booklet until you have been advised to do so by the test proctor.

1. The angles of a certain quadrilateral are $x, x+10^{\circ}, x+20^{\circ}$, and $x+30^{\circ}$. Which of the following is equal to x ?
(a) 70°
(b) 80°
(c) 30°
(d) 45°
(e) None of the above.
2. The length of a certain rectangle is twice its width. The diagonal of the rectangle has length d. Find the area of the rectangle in terms of d.
(a) $\frac{2 d^{2}}{3}$
(b) $\frac{d^{2}}{6}$
(c) $\frac{2 d^{2}}{5}$
(d) $\frac{3 d^{2}}{4}$
(e) None of the above.
3. The three points $(1,2),(3,7)$, and $(k, 10)$ are collinear. Which of the following is equal to k ?
(a) $\frac{11}{3}$
(b) $\frac{41}{9}$
(c) $\frac{21}{5}$
(d) $\frac{31}{7}$
(e) None of the above.
4. The circumference of a circle is 3 in . Find the exact area of the circle.
(a) $\frac{9}{\pi} \mathrm{in}^{2}$
(b) $\frac{36}{\pi} \mathrm{in}^{2}$
(c) $\frac{9}{16 \pi} \mathrm{in}^{2}$
(d) $\frac{9}{4 \pi} \mathrm{in}^{2}$
(e) None of the above.
5. The area of a certain square is numerically the same as its perimeter. What is the area of this square?
(a) 4
(b) 2
(c) 1
(d) 16
(e) None of the above.
6. A rectangular box has a length of a, width of b, and a height of c. Which of the following represents the length of one of its interior diagonals?
(a) $\frac{\sqrt{a^{2}+b^{2}}+\sqrt{a^{2}+c^{2}}+\sqrt{b^{2}+c^{2}}}{3}$
(b) $\frac{a+b+c}{3}$
(c) $\sqrt{a^{2}+b^{2}+c^{2}}$
(d) $\sqrt{a^{2}+b^{2}}+\sqrt{a^{2}+c^{2}}+\sqrt{b^{2}+c^{2}}$
(e) None of the above.
7. An angle measures 2 radians. What is its measure in degrees?
(a) $\left(\frac{360}{\pi}\right)^{\circ}$
(b) $\left(\frac{720}{\pi}\right)^{\circ}$
(c) $\left(\frac{\pi}{360}\right)^{\circ}$
(d) $\left(\frac{\pi}{90}\right)^{\circ}$
(e) None of the above.
8. Which of the following statements about a triangle is FALSE?
(a) The three medians are concurrent.
(b) The three altitudes are concurrent.
(c) The three angle bisectors are concurrent.
(d) The perpendicular bisectors of each side are concurrent.
(e) None of the above.
9. Which of the following represents a line through the origin parallel to the line $2 x-y=1$?
(a) $x+2 y=0$
(b) $x-2 y=0$
(c) $2 x+y=0$
(d) $2 x-y=0$
(e) None of the above.
10. Two sides of a triangle measure 3 in and 5 in . The angle between these two sides measures 120°. Find the exact length of the side opposite the 120° angle.
(a) 7 in
(b) $4+2 \sqrt{3}$ in
(c) $4 \sqrt{3}$ in
(d) $\sqrt{19}$ in
(e) None of the above.
11. The lengths of the sides of a right triangle are all integers. Suppose one leg has length 12. Which of the following cannot be the length of the hypotenuse?
(a) 15
(b) 17
(c) 20
(d) 37
(e) 13
12. The sum of the lengths of the edges of a cube is L. Find the volume of this cube.
(a) $\frac{L^{3}}{4096}$
(b) $\frac{L^{3}}{1728}$
(c) $\frac{L^{3}}{512}$
(d) $\frac{L^{3}}{27}$
(e) None of the above.
13. A convex polyhedron has 5 vertices and 6 faces. How many edges does it have?
(a) 7
(b) 9
(c) 8
(d) 10
(e) None of the above.
14. The set of all points in three dimensions that are equidistant from a single point
(a) is a sphere.
(b) is a plane.
(c) lie on two parallel planes.
(d) is a line.
(e) None of the above.
15. Which of the following statements is FALSE:
(a) A square is a rhombus.
(b) Every parallelogram is a rhombus.
(c) The angles in a rhombus sum to 360°.
(d) Opposite sides of a rhombus are congruent.
(e) None of the above.
16. The diameter of a circle is d. Another circle has twice the area of this circle. What is its diameter?
(a) $4 d$
(b) $\frac{d \sqrt{2}}{2}$
(c) $2 d$
(d) $d \sqrt{2}$
(e) None of the above.
17. The base angles of a trapezoid are each 60°. The bottom base has length 7 in and the top base has length 3 in . Find the area of the trapezoid.
(a) $5 \mathrm{in}^{2}$
(b) $10 \sqrt{3} \mathrm{in}^{2}$
(c) $5 \sqrt{3} \mathrm{in}^{2}$
(d) $10 \mathrm{in}^{2}$
(e) None of the above.
18. Two angles of an isosceles triangle are x and $x+18^{\circ}$. Two of the angles of this triangle are greater than 60°. Find x.
(a) 72°
(b) 48°
(c) 66°
(d) 54°
(e) None of the above.
19. How many 3 in $\times 3$ in square tiles are needed to cover a square that is $2 \mathrm{ft} \times 2 \mathrm{ft}$?
(a) 64
(b) 16
(c) 32
(d) 144
(e) None of the above.
20. The legs of a right triangle have lengths 15 in and 20 in . Find the length of the altitude from the vertex of the right angle to the hypotenuse.
(a) 12 in
(b) 24 in
(c) 6 in
(d) 8 in
(e) None of the above.
21. Each individual square on a sheet of graph paper is 1 unit $\times 1$ unit. A square is drawn on this sheet of graph paper using grid points as its corner points. Which of the following cannot be the area of this square?
(a) 10 units 2
(b) 13 units 2
(c) 7 units 2
(d) 9 units 2
(e) $8 u^{u n i t s}{ }^{2}$
22. A cylindrical tank of radius 6 in and height 24 in is full of water. All of the water from the tank is poured into an empty glass aquarium that has the shape of a rectangular prism with a base meauring 12 in $\times 24$ in and a height of 54 in . After the water is poured in the aquarium, what is the height of the water in the aquarium?
(a) $\frac{3 \pi}{2}$ in
(b) 12π in
(c) 6π in
(d) $\frac{\pi}{3}$ in
(e) None of the above.
23. The length of a rectangle is 1 in less than three times its width. Its perimeter is 10 in . Find the area of this rectangle.
(a) $20 \mathrm{in}^{2}$
(b) $\frac{46}{3} \mathrm{in}^{2}$
(c) $\frac{21}{4} \mathrm{in}^{2}$
(d) $\frac{319}{16} \mathrm{in}^{2}$
(e) None of the above.
24. The lengths of the sides of a certain triangle are 12,17 , and x where x is an integer. How many different values for x are possible?
(a) 25
(b) 21
(c) 22
(d) 23
(e) None of the above.
25. Find the coordinates of the point obtained by reflecting the point $(-2,5)$ about the y-axis.
(a) $(-2,-5)$
(b) $(-5,-2)$
(c) $(2,5)$
(d) $(5,-2)$
(e) None of the above.
26. The base angles of an isosceles triangle are each 30° and the length of its longest side is 10 in . Find the area of this triangle.
(a) $25 \sqrt{3} \mathrm{in}^{2}$
(b) $\frac{25 \sqrt{3}}{2} \mathrm{in}^{2}$
(c) $\frac{25 \sqrt{3}}{3} \mathrm{in}^{2}$
(d) $\frac{50 \sqrt{3}}{3} \mathrm{in}^{2}$
(e) None of the above.
27. An equilateral triangle has an area of $\sqrt{3} \mathrm{in}^{2}$. Find its perimeter.
(a) $\frac{9}{2}$ in
(b) $\frac{3}{2}$ in
(c) 4 in
(d) 3 in
(e) None of the above.
28. A right triangle has legs of lengths 2 in and $\frac{5}{6}$ in. Find the length of the hypotenuse.
(a) $\frac{13}{6}$ in
(b) $\frac{17}{6}$ in
(c) $\frac{\sqrt{119}}{6}$ in
(d) $\frac{7 \sqrt{6}}{6}$ in
(e) None of the above.
29. The surface area of a cube is $100 \mathrm{in}^{2}$. Suppose each edge of the cube is doubled in length. Find the surface area of the resulting cube.
(a) $200 \sqrt{2} \mathrm{in}^{2}$
(b) $200 \mathrm{in}^{2}$
(c) $100 \sqrt{2} \mathrm{in}^{2}$
(d) $400 \mathrm{in}^{2}$
(e) None of the above.
30. Which of the following statements is FALSE:
(a) Complements of the same angle are congruent.
(b) A supplement of an acute angle must be an obtuse angle.
(c) Vertical angles sum to 90°.
(d) Supplements of the same angle are congruent.
(e) None of the above.
31. Which of the following statements is FALSE:
(a) The triangle with sides 2,3 , and 4 is similar to the triangle with sides 4,5 , and 6 .
(b) Any two equilateral triangles are similar.
(c) Any two isosceles right triangles are similar.
(d) The right triangle with sides 3,4 , and 5 is similar to the right triangle with sides 9,12 , and 15.
(e) None of the above.
32. The diagonals of a rhombus are 6 in and 8 in . What is the length of each side of the rhombus?
(a) $4 \sqrt{2}$ in
(b) 5 in
(c) $6 \sqrt{2}$ in
(d) 7 in
(e) None of the above.
33. A sector with central angle 90° is cut from a circle of radius 4 in . The edges of the sector are taped together to form a right circular cone. Find the volume of this cone.
(a) $\frac{8 \pi \sqrt{3}}{3} \mathrm{in}^{3}$
(b) $\frac{\pi \sqrt{3}}{3}$ in 3
(c) $\frac{\pi \sqrt{15}}{3} \mathrm{in}^{3}$
(d) $\frac{4 \pi \sqrt{15}}{3} \mathrm{in}^{3}$
(e) None of the above.
34. A triangle has vertices $(0,0),(4,0)$, and $(0,4)$. A vertical line through $(b, 0)$ divides the triangle into two regions of equal area. Find b.
(a) $4-2 \sqrt{2}$
(b) $\sqrt{2}$
(c) $4-\sqrt{2}$
(d) $2 \sqrt{2}$
(e) None of the above.
35. A triangle with sides 6 in, 8 in, and 10 in is inscribed in a circle. Find the radius of this circle.
(a) $4 \sqrt{2}$ in
(b) 5 in
(c) $6 \sqrt{3}$ in
(d) 12 in
(e) None of the above.
