

Geometry / Integrated Math II 2011

Sponsored by the Indiana Council of Teachers of Mathematics

Indiana State Mathematics Contest

This test was prepared by faculty at Indiana State University

ICTM Website http://www.indianamath.org/

Do not open this test booklet until you have been advised by the test proctor.

Next year's math contest date: April 28, 2012

- 1. Two angles are supplementary. One angle is 40° more than four times the other. Find the difference of the measures of the two angles.
 - A) 10°
- B) 100°
- C) 124°
- D) 106°
- E) none of these

- 2. Which of the following are *never* true?
 - I. For points A, M and B, if AM = MB, then A, M, and B are collinear.
 - II. If two angles are congruent, then they are right angles.
 - III. The bisectors of vertical angles are opposite rays.
 - IV. The supplement of an obtuse angle is another obtuse angle.
 - V. Complementary angles are congruent.
 - A) I only

B) I, III, and IV

C) III, IV, and V

D) IV only

- E) none of these
- 3. Quadrilateral ABCD is a rectangle. Which of the following statements are true?

- A) Area of \triangle CDE = Area of \triangle ABE
- B) Area of \triangle CDE = Area of \triangle DEA
- C) Area of \triangle CDE = Area of \triangle CEB
- D) All of the above are true
- E) none of these
- 4. Find the value for *x* in degrees in the figure to the right (not drawn to scale) that has congruent angles marked.
 - A) 80°
 - B) 130°
 - C) 160°
 - D) 125°
 - E) none of these

5. An airplane has leveled off and is flying horizontally at an altitude of 12,000 feet. The pilot can see each of two small towns at R and T in front of the plane. With angle measures as indicated in the figure below (not drawn to scale), find the measure of $\angle R$.

- A) 117°
- B) 63°
- C) 103°
- D) 77°
- E) none of these

4/30/2011

- 6. Suppose that (a) distinct planes M and N intersect, (b) point A lies in both planes M and N, and (c) point B lies in both planes M and N. What can you conclude about \overline{AB} ?
 - A) \overrightarrow{AB} is perpendicular to plane M only
 - B) \overrightarrow{AB} is the intersection of planes M and N
 - C) \overrightarrow{AB} is perpendicular to plane N only
 - D) \overrightarrow{AB} is perpendicular to both plane M and plane N
 - E) none of these
- 7. Given the figure to the right where a and b are lines and $a \mid\mid b$, find the values of x and y.

B)
$$x = 24, y = 8$$

C)
$$x = 30, y = 10$$

D)
$$x = 24, y = -8$$

E) none of these

- 8. Which of the following are *always* true?
 - I. An isosceles triangle is a right triangle.
 - II. A right triangle has two complementary angles.
 - III. An equilateral triangle is a right triangle.
 - IV. A scalene triangle is an isosceles triangle.
 - V. A right triangle has two congruent angles.

- A) IV only
- B) II and V
- I, III, and V C)
- D) II only
- E) none of these

- 9. Which of the following are *always* true?
 - I. A square is a rectangle.
 - II. If two of the angles of a trapezoid are congruent, then the trapezoid is isosceles.
 - III. The diagonals of a rhombus are perpendicular bisectors of each other.
 - IV. Two consecutive angles of a parallelogram are supplementary.
 - V. The four sides of a kite are congruent.
 - A) I only

- B) I, II, III, and IV
- C) I, III, and IV

D) IV only

- E) none of these
- 10. Which of the following statements are *never* true for circles with positive radii?
 - I. In a circle, congruent chords are equidistant from the center.
 - II. If a central angle and an inscribed angle of a circle intercept the same arc, then they are congruent.
 - III. If a parallelogram is inscribed in a circle, then each of its diagonals must be a diameter.
 - IV. If two chords of a circle are not congruent, then the shorter chord is nearer the center of the circle.
 - V. Concentric circles have exactly one point in common.
 - A) II and IV

B) II and V

C) II, III, and IV

D) II, IV, and V

- E) none of these
- 11. Find the area of the shaded part of the region of the figure below in square units. The figure is a circle inscribed in an equilateral triangle whose sides have length 10 units.
 - A) $25\sqrt{3} \frac{50}{9}\pi$ B) $25\sqrt{3} \frac{25}{9}\pi$ C) $25\sqrt{3} \frac{25}{9}\pi$ D) $25\sqrt{3} \frac{25}{3}\pi$

 - E) none of these

12. Find the area of the shaded region of the figure below in square units.

E) none of these

- 13. How many vertices does a pentagonal prism have?
 - A) 5
- B) 6
- C) 7
- D) 8
- E) none of these

- 14. How many faces does a right octagonal pyramid have?
 - A) 6
- B) 7
- C) 8
- D) 9
- E) none of these

- 15. How many edges does an oblique hexagonal prism have?
 - A) 18
- B) 20
- C) 22
- D) 24
- E) none of these
- 16. Find the length of the radius of a right circular cone made from a circular sector with a radius of 12 and a central angle with measure ^{150°} whose radii are joined together to make the lateral part of the cone.
 - A) 4
- B) 5
- C)
- D) 7
- E) none of these
- 17. When a circular region is revolved about a line on the circle's exterior, what is the name of the resulting shape?
 - A) sphere
- B) torus
- C) parabola
- D) frustrum
- E) none of these

- 18. Describe the shape of the faces of a regular octahedron.
 - A) triangles
- B) squares
- C) pentagons
- D) octagons
- E) none of these

- 19. A lawn roller in the shape of a right circular cylinder has a diameter of 18 in. and a length of 4 ft. Find the area rolled during one complete revolution of the roller. Give your answer to the nearest square foot.
 - A) 6
- B) 19
- C) 72
- D) 226
- E) none of these
- 20. Sue and Dave's semicircular driveway below (not drawn to scale) is to have flowers planted on both of the curved sides. If individual flowers are to be planted 1 foot from the edge of the driveway at intervals of approximately 1 foot, how many flowers are needed (rounded to the nearest 10)?

- A) 150
- B) 200
- C) 250
- D) 300
- E) none of these

Figure for 21, 22, and 23

- 21. In the figure above (not drawn to scale), the measure of minor arc AB is 80° and the measure of angle AEB is 75°. What is the measure of minor arc CD?
 - A) 65°
- B) 70°
- C) 75°
- D) 80°
- E) none of these
- 22. In the figure above (not drawn to scale), if AE = 8, ED = 5, CE = 10, what is BE?
 - A) 4
- B) 2.5
- C) 16
- D) 8
- E) none of these
- 23. In the above figure (not drawn to scale), if FC = 6 and ED = 9, what is CD?
 - A) 3
- B) 2
- C) 12
- D) 18
- E) none of these

24. If two circular gears (pictured in the figure below that is not drawn to scale), each of radius 4 in, are used in a chain drive system with a chain of length 54 in, what is the distance in inches (to the nearest hundredth) between the centers of the gears?

- A) 20.22
- B) 16.32
- C) 14.43
- D) 18.12
- E) none of these
- 25. Find the altitude (in meters) of a right circular cone in which the diameter of the base measures 9.6 m and the slant height is 5.2 m.
 - A) 6
- B) 5
- C) 4
- D) 3
- E) none of these
- 26. The total surface area of a regular hexahedron is 105.84 m². Find the length of each edge in meters (to the nearest tenth).
 - A) 10.2
- B) 8.0
- C) 6.4
- D) 4.2
- E) none of these
- 27. A sphere is inscribed within a right circular cylinder whose altitude and diameter have equal measures. Find the ratio of the surface area of the cylinder to that of the sphere.
 - A) 2:1
- B) 3:1
- C) 3:2
- D) 2:3
- E) none of these
- 28. If (2,3), (5,-2), and (7,2) are three vertices (not necessarily consecutive) of a parallelogram, find the possible locations of the fourth vertex.
 - A) (5,7); (0,-2); (9,-3)
- B) (3,6); (1,-2); (9,-4)
- C) (4,7); (0,-1); (10,-3)

- D) (3,5); (1,-3); (8,-4)
- E) none of these
- 29. There are two points on the *y* axis that are located a distance of 6 units from the point (3,1). Determine the coordinates of each point.
 - A) $\begin{pmatrix} 0, & 1+3\sqrt{3} \end{pmatrix}$ and $\begin{pmatrix} 0, & 1-3\sqrt{3} \end{pmatrix}$
 - B) $(0, 2+\sqrt{3})$ and $(0, 2-\sqrt{3})$
 - C) $\begin{pmatrix} 0, & 3\sqrt{3} + 1 \end{pmatrix}$ and $\begin{pmatrix} 0, & 3\sqrt{3} 1 \end{pmatrix}$

- $1 + \frac{\sqrt{3}}{2}$ and $\left(0, \quad 1 \frac{\sqrt{3}}{2}\right)$
- E) none of these
- 30. For triangle PNQ, the vertices are P(0, 0), N(a, 0), and Q(b, c). In terms of a, b, and c, find the coordinates of the orthocenter of triangle PNQ.
 - A) $\left(\frac{a-b}{c}, a\right)$

- B) $\left(b, \frac{ab-b^2}{c}\right)$ C) $\left(\frac{b^2-4ac}{2a}, b\right)$

- E) none of these
- 31. The shaded region in the figure below (not drawn to scale) is that of a trapezoid. Determine the height of the trapezoid if A and B are midpoints of their respective sides.

- A) 4.2 units
- B) 3.1 units
- C) 2.4 units
- D) 1.3 units
- E) none of these
- 32. The locus of points that are equidistant from a fixed line and a point not on that line is called:
 - A) a parabola
- B) a hyperbola C) an ellipse
- D) a circle
- E) none of these