

Comprehensive 2011

Sponsored by the Indiana Council of Teachers of Mathematics

Indiana State Mathematics Contest

This test was prepared by faculty at **IUPUI**

ICTM Website http://www.indianamath.org/

Do not open this test booklet until you have been advised by the test proctor.

Next year's math contest date: April 28, 2012

2.

- 1. Find the inverse function. $f(x) = 2 + 3e^{4x}$
 - A) $f^{-1}(x) = 3\ln\left(\frac{x+2}{4}\right)$ B) $f^{-1}(x) = \frac{1}{3}\ln\left(\frac{x+2}{4}\right)$ C) $f^{-1}(x) = 3\ln\left(\frac{x-2}{4}\right)$ D) $f^{-1}(x) = \frac{1}{3}\ln\left(\frac{x-2}{4}\right)$ E) $f^{-1}(x) = \frac{1}{4}\ln\left(\frac{x-2}{3}\right)$

If
$$\begin{bmatrix} a & c \\ d & b \end{bmatrix}$$
 has the value $ab - cd$, then the equation $\begin{vmatrix} 2x & 1 \\ x & x \end{vmatrix} = 0$:

- A) is satisfied for only 1 value of \mathfrak{X} .
- B) is satisfied for 2 values of \mathbf{x} .
- C) is satisfied for no values of x.
- D) is satisfied for an infinite number of values of \mathfrak{X} .
- E) none of these
- 3. In triangle *ABC*, altitude \overline{AH} and median \overline{BM} intersect inside the triangle and are congruent. If the measure of $\angle ACB = 45^{\circ}$, then the measure of $\angle MBC$ is:
 - A) 30° B) 35° C) 40° D) 45° E) 60°
- 4. In an experiment, a die with six sides is repeatedly rolled and the numbers that come up on each roll are added. Once the sum *exceeds* 12, the experiment ends. For this experiment, what sum is expected to occur most frequently?
 - A) 17 B) 16 C) 15 D) 14 E) 13

Page 2 of 8

A) 0

6. A sequence
$$\{b_i\}$$
 is defined as $b_{i+1} = \frac{1}{1-b_i}$ for $i \ge 1$. If $b_3 = b_1$, compute $(b_9)^9$.

C) -1

D) 1

E) 10

B) -10

- 7. The median of a trapezoid cuts the trapezoid into two regions whose areas are in the ratio 1:2. Compute the ratio of the smaller base of the trapezoid to its longer base.
 - A) 1:5 B) 1:4 C) 1:3 D) 1:2 E) 1:1

8. Select the expression that is equivalent to:

$$\csc\left(\cot^{-1}\left(\frac{\sqrt{25-x^2}}{x}\right)\right)$$
A) $\frac{\sqrt{25-x^2}}{x}$
B) $\frac{5}{x}$
C) $\frac{x}{\sqrt{25-x^2}}$
D) $\frac{x}{5}$
E) $\frac{5}{\sqrt{25-x^2}}$

- 9. Compute the number of integers from 1 through 100 inclusive that are of the form kn^2 , where k and n are positive integers and n > 1.
 - A) 11 B) 25 C) 36 D) 39 E) 42

	A) n,	$n + 1_{i}$	n + 2	B) n,	$2n_i$	n + 1	C) $n+1_i$	$2n_t$	n + 1
	D) n -	+1, n,	2 n	E) 2 <i>n</i> ,	n + 1,	n + 2			
11. 1	Compu	te.	1						
1+ <u>-</u> ((1 + 2) +	= (1 + 2 + 3) 3	$+ \cdots + \frac{-}{16}(1)$	+ 2 + 3 +	+ 16)				
	A) 15	2	B) 120	C	76	D)	1	E) no	ne of these

12. A bag contains 6 coins. Two coins have 2 heads (double-headed on each coin), the other four coins are fair (a head and a tail on each coin). A coin is selected at random from the bag and flipped. The coin lands with heads showing. What is the probability that the coin selected was the double-headed coin?

A)
$$\frac{1}{2}$$
 B) $\frac{1}{3}$ C) $\frac{1}{4}$ D) $\frac{1}{5}$ E) $\frac{1}{6}$

13. For all ordered pairs of positive integers (x, y), we define f(x, y) as follows:

$$f(x, 1) = x$$

$$f(x, y) = 0, \text{ if } y > x$$

$$f(x + 1, y) = y \cdot [f(x, y) + f(x, y - 1)]$$

Compute $f(5, 5)$.
A) 720 B) 120 C) 24 D) 9 E) 0
Page 4 of 8 4/30/2011

- 14. If g(a) = a 5 and G(a, b) = a 2b, then G(-6, g(3)) is:
 - A) -22 B) -8 C) -6 D) -3 E) -2
- 15. As the number of sides of a polygon increases from 3 to *n*, the sum of the exterior angles formed by extending each side in succession:
 - A) remains constant
 - B) increases
 - C) decreases
 - D) becomes (n-3) straight angles
 - E) cannot be predicted
- 16. A right triangle *ABC* has its hypotenuse *AB* trisected at *M* and *N*. If $CM^2 + CN^2 = k \cdot AB^2$, then what is the value of k?
 - A) 2 B) $\frac{2}{3}$ C) $\frac{1}{2}$ D) $\frac{5}{9}$ E) $\frac{1}{4}$
- 17. If $\log_{10} m = b \log_{10} n$, then m is equal to:
 - A) $\frac{b}{n}$ B) $\frac{10^{b}}{n}$ C) bn D) $10^{b}n$ E) $b-10^{n}$
- 18. If $y = \log_{\alpha} x$, and $\alpha > 1$, which of the following statements is incorrect?
 - A) if x = 1, then y = 0
 - B) if x = a, then y = 1
 - C) if x = -1, then y is imaginary
 - D) if 0 < x < 1, then y is always less than 0

Comprehensive

- 19. When $x^{18} + 1$ is divided by x 1, the remainder is:
 - A) -1 B) 0 C) 1 D) 2 E) x

20. Two bicyclists θ and π start at the same time to ride from point A to point B, 60 miles away. θ travels 4 miles per hour slower than π . π reaches point B and at once turns back and meets θ 12 miles from point B. The rate that θ travels is:

A) 8 mph B) 12 mph C) 16 mph D) 20 mph E) 24 mph

21. A six digit number is formed by repeating a three digit number; for example, 256,256 or 678,678. Any number of this form is always exactly divisible by:

A) 7 only B) 11 only C) 13 only D) 101 E) 1001

- 22. The Fibonacci sequence is defined by $F_1 = 1$, $F_2 = 1$, $F_n = F_{n-1} + F_{n-2}$ for $n \ge 2$. Determine the smallest positive integer k so that F_k is divisible by 31.
 - A) 8 B) 15 C) 30 D) 60 E) none of these

23. If the radius of a circle is a rational number, then its area is given by a number which is:

A) rationalB) irrationalC) integralD) rational perfect squareE) none of these

- 24. Determine the value of B so that the line whose equation is 3x + By = 5 is perpendicular to the line containing the points (3,4) and (-6,7).
 - A) -3 B) -2 C) -1 D) 2/3 E) 3
- 25. The number of significant digits in the measurement of the side of a square whose computed area is 1.1025 square inches to the nearest ten-thousandths of a square inch is:
 - A) 1 B) 2 C) 3 D) 4 E) 5
- 26. Solve for $x : e^{2x} 11e^x + 30 = 0$
 - A) $x = \ln 5$ or $x = \ln 6$
 - B) x = 5 or x = 6
 - C) $x = e^5$ or $x = e^6$
 - D) $x = e^{-11}$ or $x = e^{30}$
 - E) $x = -\ln 11$ or $x = \ln 30$

27. I	Evaluate the limit:
$\lim x^2$ -	π^2
$x \rightarrow \pi - \chi =$	- 11

A) 0	B) 1	C) <i>π</i>	D) 2 π	E) undefined

has

28.

 $x - \frac{7}{x - 3} = 3 - \frac{7}{x - 3}$

- A) infinitely many integral roots
- B) no roots

The equation

- C) one integral root
- D) two equal integral roots
- E) two non-equal integral roots

- 29. The diagonal of square I is a + b. The perimeter of square II which has twice the area of square I is:
 - A) $(a+b)^2$ B) $\sqrt{2}(a+b)^2$ C) 4(a+b) D) 2(a+b) E) $\sqrt{8}(a+b)$
- 30. Given $(10^{12} + 25)^2 (10^2 25)^2 = 10^n$, find n.
 - A) 1 B) 2 C) 4 D) 12 E) 14
- 31. A circle passes through vertices A, B, and D of rhombus ABCD with the measure of $\angle A = 60^\circ$. The circle intersects \overline{AC} at point P. If PC = 4, compute AC.
 - A) 6 B) 8 C) 10 D) 12 E) 14

- 32. The product of the roots of the equation $x^2 4x + 8 = 0$ is equal to:
 - A) -4 B) 0 C) 2 D) 4+4*i* E) 8

IUPUI