

Comprehensive 2011

Sponsored by the Indiana Council of Teachers of Mathematics

Indiana State Mathematics Contest

This test was prepared by faculty at IUPUI

ICTM Website

 http://www.indianamath.org/Do not open this test booklet until you have been advised by the test proctor.
Next year's math contest date: April 28, 2012

1. Find the inverse function. $f(x)=2+3 e^{4 x}$
A) $f^{-1}(x)=3 \ln \left(\frac{x+2}{4}\right)$
B) $f^{-1}(x)=\frac{1}{3} \ln \left(\frac{x+2}{4}\right)$
C) $f^{-1}(x)=3 \ln \left(\frac{x-2}{4}\right)$
D) $f^{-1}(x)=\frac{1}{3} \ln \left(\frac{x-2}{4}\right)$
E) $f^{-1}(x)=\frac{1}{4} \ln \left(\frac{x-2}{3}\right)$
2. If $\left|\begin{array}{cc}a & c \\ d & b\end{array}\right|$ has the value $a b-c d$, then the equation $\left|\begin{array}{ll}2 x & 1 \\ x & x\end{array}\right|=0$:
A) is satisfied for only 1 value of x.
B) is satisfied for 2 values of x.
C) is satisfied for no values of x.
D) is satisfied for an infinite number of values of x.
E) none of these
3. In triangle $A B C$, altitude $\overline{A H}$ and median $\overline{B M}$ intersect inside the triangle and are congruent. If the measure of $\angle A C B=45^{\circ}$, then the measure of $\angle M B C$ is:
A) 30°
B) 35°
C) 40°
D) 45°
E) 60°
4. In an experiment, a die with six sides is repeatedly rolled and the numbers that come up on each roll are added. Once the sum exceeds 12, the experiment ends. For this experiment, what sum is expected to occur most frequently?
A) 17
B) 16
C) 15
D) 14
E) 13
5. The sum $\sqrt[3]{5+2 \sqrt{13}}+\sqrt[3]{5-2 \sqrt{13}}$ is equal to:
A) $\frac{\sqrt[3]{65}}{4}$
B) $4 \sqrt{13}$
C) $\frac{3}{2}$
D) 1
E) $\frac{1+\sqrt[6]{13}}{2}$
6. A sequence $\left.b_{i}\right)$ is defined as $b_{i+1}=\frac{1}{1-b_{i}}$ for $i \geq 1$. If $b_{\mathrm{a}}=b_{1}$, compute $\left(b_{\mathrm{q}}\right)^{9}$.
A) 0
B) $\quad-10$
C) -1
D) 1
E) 10
7. The median of a trapezoid cuts the trapezoid into two regions whose areas are in the ratio $1: 2$. Compute the ratio of the smaller base of the trapezoid to its longer base.
A) $1: 5$
B) $1: 4$
C) $1: 3$
D) $1: 2$
E) $1: 1$
8. Select the expression that is equivalent to:
$\csc \left(\cot ^{-1}\left(\frac{\sqrt{25-x^{2}}}{x}\right)\right)$
A) $\frac{\sqrt{25-x^{2}}}{x}$
B) $\frac{5}{x}$
C) $\frac{x}{\sqrt{25-x^{2}}}$
D) $\frac{x}{5}$
E) $\frac{5}{\sqrt{25-x^{2}}}$
9. Compute the number of integers from 1 through 100 inclusive that are of the form $k n^{2}$, where k and n are positive integers and $n>\mathbf{1}$.
A) 11
B) 25
C) 36
D) 39
E) 42
10. How many faces, edges, and vertices does a pyramid with an n-gon base have?
A) $n, n+1, n+2$
B) $n_{r} \quad 2 n, \quad n+1$
C) $n+1, \quad 2 n, \quad n+1$
D) $n+1$,
$n, \quad 2 n$
E) $2 n$,
$n+1, \quad n+2$
11. Compute.
$1+\frac{1}{2}(1+2)+\frac{1}{3}(1+2+3)+\cdots+\frac{1}{16}(1+2+3+\cdots+16)$
A) 152
B) 120
C) 76
D) 1
E) none of these
12. A bag contains 6 coins. Two coins have 2 heads (double-headed on each coin), the other four coins are fair (a head and a tail on each coin). A coin is selected at random from the bag and flipped. The coin lands with heads showing. What is the probability that the coin selected was the double-headed coin?
A) $\frac{1}{2}$
B) $\frac{1}{3}$
C) $\frac{1}{4}$
D) $\frac{1}{5}$
E) $\frac{1}{6}$
13. For all ordered pairs of positive integers (x, y), we define $f(x, y)$ as follows:

$$
\begin{aligned}
& f(x, 1)=x \\
& f(x, y)=0, \text { if } y>x \\
& f(x+1, y)=y \cdot[f(x, y)+f(x, y-1)]
\end{aligned}
$$

Compute $f(5,5)$.
A) 720
B) $\mathbf{1 2 0}$
C) 24
D) 9
E) 0
14. If $g(a)=a-5$ and $G(a, b)=a-2 b$, then $G(-6, g(3))$ is:
A) -22
B) -8
C) -6
D) -3
E) -2
15. As the number of sides of a polygon increases from 3 to n, the sum of the exterior angles formed by extending each side in succession:
A) remains constant
B) increases
C) decreases
D) becomes $(n-3)$ straight angles
E) cannot be predicted
16. A right triangle $A B C$ has its hypotenuse $A B$ trisected at M and N. If $C M^{2}+C N^{2}=k \cdot A B^{2}$, then what is the value of k ?
A) 2
B) $\frac{2}{3}$
C) $\frac{1}{2}$
D) $\frac{5}{9}$
E) $\frac{1}{4}$
17. If $\log _{10} m=b-\log _{10} n$, then m is equal to:
A) $\frac{b}{n}$
B) $\frac{10^{b}}{n}$
C) $b n$
D) $10^{b} n$
E) $b-10^{n}$
18. If $y=\log _{\alpha} x$, and $\alpha>1$, which of the following statements is incorrect?
A) if $x=1$, then $y=0$
B) if $x=a$, then $y=1$
C) if $x=\mathbf{- 1}$, then y is imaginary
D) if $0<x<\mathbf{1}$, then y is always less than 0
E) all of the above statements are correct
19. When $x^{13}+1$ is divided by $x-1$, the remainder is:
A) -1
B) 0
C) 1
D) 2
E) x
20. Two bicyclists θ and π start at the same time to ride from point A to point $\mathrm{B}, 60$ miles away. θ travels 4 miles per hour slower than $\pi . \pi$ reaches point B and at once turns back and meets $\theta 12$ miles from point B . The rate that θ travels is:
A) 8 mph
B) 12 mph
C) 16 mph
D) 20 mph
E) 24 mph
21. A six digit number is formed by repeating a three digit number; for example, 256,256 or 678,678 . Any number of this form is always exactly divisible by:
A) 7 only
B) 11 only
C) 13 only
D) 101
E) 1001
22. The Fibonacci sequence is defined by $F_{1}=\mathbf{1}, \quad F_{z}=1, \quad F_{n}=F_{n-1}+F_{n-2}$ for $n \geq 2$. Determine the smallest positive integer k so that F_{k} is divisible by 31 .
A) 8
B) 15
C) 30
D) 60
E) none of these
23. If the radius of a circle is a rational number, then its area is given by a number which is:
A) rational
B) irrational
C) integral
D) rational perfect square
E) none of these
24. Determine the value of B so that the line whose equation is $3 x+B y=5$ is perpendicular to the line containing the points $(3,4)$ and $(-6,7)$.
A) -3
B) -2
C) -1
D) $2 / 3$
E) 3
25. The number of significant digits in the measurement of the side of a square whose computed area is 1.1025 square inches to the nearest ten-thousandths of a square inch is:
A) 1
B) 2
C) 3
D) 4
E) 5
26. Solve for $x: e^{2 x}-11 e^{x}+30=0$
A) $x=\ln 5$ or $x=\ln 6$
B) $x=5$ or $x=6$
C) $x=e^{5}$ or $x=e^{6}$
D) $x=e^{-12}$ or $x=e^{30}$
E) $x=-\ln 11$ or $x=\ln 30$
27. Evaluate the limit:
$\lim _{x \rightarrow \pi} \frac{x^{2}-\pi^{2}}{x-\pi}$
A) 0
B) 1
C) π
D) 2π
E) undefined
28. The equation $x-\frac{7}{x-3}=3-\frac{7}{x-3}$ has
A) infinitely many integral roots
B) no roots
C) one integral root
D) two equal integral roots
E) two non-equal integral roots
29. The diagonal of square I is $a+b$. The perimeter of square II which has twice the area of square I is:
A) $(a+b)^{2}$
B) $\sqrt{2}(a+b)^{2}$
C) $4(a+b)$
D) $2(a+b)$
E) $\sqrt{8}(a+b)$
30. Given $\left(10^{12}+25\right)^{2}-\left(10^{2}-25\right)^{2}=10^{n}$, find n.
A) 1
B) 2
C) 4
D) 12
E) 14
31. A circle passes through vertices A, B, and D of rhombus $A B C D$ with the measure of $\angle A=60^{\circ}$. The circle intersects $\overline{A C}$ at point P. If $P C=4$, compute $A C$.
A) 6
B) 8
C) 10
D) 12
E) 14
32. The product of the roots of the equation $x^{2}-4 x+8=0$ is equal to:
A) -4
B) 0
C) 2
D) $4+4 i$
E) 8

