

Algebra I/Integrated Math I 2011

Sponsored by the Indiana Council of Teachers of Mathematics

Indiana State Mathematics Contest

This test was prepared by faculty at University of Southern Indiana

ICTM Website

 http://www.indianamath.org/Do not open this test booklet until you have been advised by the test proctor.
Next year's math contest date: April 28, 2012

1. Factor: $x^{2}+15 x-54$
A) $(x+9)(x-6)$
B) $(x-9)(x+6)$
C) $(x-18)(x+3)$
D) $(x+18)(x-3)$
E) $(x+27)(x-2)$
2. Find the product: $(x+3)(x-3)^{2}$
A) $x^{3}-27$
B) $x^{3}+27$
C) $x^{3}-3 x^{2}-9 x+27$
D) $x^{3}+3 x^{2}-9 x+27$
E) $x^{\mathbf{3}}+\mathbf{3} x^{2}-9 x-27$
3. Simplify: $y(2 x-y+3)-5\left(x^{2}+x y-2 x\right)-x(3 x-7 y+1)$
A) $1 \mathbf{4} x y-8 x^{2}-y^{2}+9 x+3 y$
B) $\mathbf{4} x y-8 x^{2}-y^{2}-11 x+3 y$
C) $-10 x y-8 x^{2}-y^{2}+9 x+3 y$
D) $4 x y-8 x^{2}-y^{2}+11 x+3 y$
E) $\mathbf{4} x y-8 x^{2}-y^{2}+9 x+3 y$
4. Simplify: $-2\left(3 a^{2}+a^{2}\right)-5\left(2 a^{2}-a^{2}+a\right)$
A) $-4 a^{2}+3 a^{2}-5 a$
B) $-16 a^{2}-3 a^{2}+5 a$
C) $-16 a^{2}+3 a^{2}+5 a$
D) $-16 a^{2}+3 a^{2}-5 a$
E) $-16 a^{2}+7 a^{2}-5 a$
5. Find the distance between the points $(5,8)$ and $(-1,5)$.
A) 3
B) $\mathbf{3} \sqrt{5}$
C) $\sqrt{-45}$
D) $\sqrt{153}$
E) $\sqrt{185}$
6. Factor: $m p x+m q x+n p x+n q x$
A) $(p+q)(m+n)$
B) $x(p+q)^{2}(m+n)$
C) $x(p+q)(m+n)^{2}$
D) $x(p+q)^{2}(m+n)^{2}$
E) $x(p+q)(m+n)$
7. The proper dose of a children's antibiotic is 0.025 grams per kilogram of body mass. What is the proper dose for a child with a body mass of 45 kg ?
A) 0.01125 g
B) 1.125 g
C) 18 g
D) 1800 g
E) none of these
8. Which of the following equations represents a line perpendicular to the line $14 x-5 y=60$?
A) $4 x+5 y=-60$
B) $5 x+14 y=280$
C) $5 x-14 y=84$
D) $14 x+5 y=-60$
E) $14 x-5 y=280$
9. An isosceles triangle is such that two of its sides measure 7.0 ft and the other side measures 8.0 ft . Find the height of the triangle to the nearest tenth of a foot.
A) 1.0 ft
B) 3.9 ft
C) 5.7 ft
D) 8.1 ft
E) 10.6 ft

10. Solve the equation: $56=(2 t+1)^{2}+(2 t+1)$
A) $[8,7]$
B) $[-8,7]$
C) $[8,-7]$
D) $\left\{-4, \frac{7}{2}\right\}$
E) $\left\{3,-\frac{9}{2}\right\}$
11. Solve $t=a x^{2}$ for x for all $t>0, q>0$.
A) $x= \pm \frac{\sqrt{t q}}{q}$
B) $x= \pm \frac{\sqrt{t q}}{t}$
C) $x= \pm q \sqrt{t q}$
D) $x= \pm q \sqrt{t}$
E) none of these
12. Simplify:
$\frac{6+3^{2}+12+3-9}{2(6-9)+3^{0}-9 \div(-3)}$
A) -10
B) -5
C) $-\frac{10}{3}$
D) $\frac{13}{27}$
E) $\frac{1}{2}$
13. Solve the equation: $5-2(3 x-4)-3^{2}=2 x-3(8-2 x)$
A) $\left\{\frac{1}{2}\right\}$
B) $[2]$
C) $\left\{\frac{23}{7}\right\}$
D) [6]
E) [15]
14. Solve the equation:
$\frac{2-4(3 x+5)}{7}+4=\frac{2 x}{3}$
A) $[-1]$
B) $\left\{-\frac{21}{35}\right\}$
C) $\left\{\frac{3}{5}\right\}$
D) $\left\{\frac{27}{16}\right\}$
E) [3]
15. Solve the inequality: $-4 \leq 6-\frac{2}{3} x<8$
A) $(-\infty,-3) \cup[15, \infty)$.
B) $(-\infty,-9) \cup[9, \infty)$ -
C) $(-9,9)-1$
D) $(-3,15]-1$
E) $\left(-\frac{4}{3}, \frac{20}{3}\right]$
16. Plumbing Company A charges $\$ 55$ per hour for the first 2 hours and $\$ 45$ per hour beyond 2 hours. Company B charges $\$ 60$ per hour for the first 3 hours and $\$ 40$ per hour beyond 3 hours. For what number of hours is it cheaper to use Company A?
A) more than 8
B) less than 8
C) more than 14
D) less than 14
E) none of these
17. Solve the inequality: $4|6-3 x| \geq 48$
A) $(-\infty,-2] \cup[6, \infty)$
B) $(-\infty, 6]$
C) $[-2,6]$
D) $[2, \infty)$
E) $(-\infty,-6] \cup[2, \infty)$
18. What is the value of the expression if $x=-2$?

$$
-\left(-x-x^{x}\right)^{-x}
$$

A) -36
B) $\mathbf{- 4}$
C) $-\frac{49}{16}$
D) $\frac{9}{16}$
E) 4
19. Solve the equation: $-\frac{1}{3}(-4+3 x)=\frac{1}{2}(2 x-3)$
A) $\frac{17}{12}$
B) $\frac{17}{6}$
C) 9
D) infinite number of solutions
E) no solution
20. Find the product: $(x+1)^{2}\left[x^{2}-2(x+2)\right]$
A) $x^{4}+x^{2}+6 x+4$
B) $x^{4}-2 x^{3}-3 x^{2}-2 x-4$
C) $x^{4}-2 x^{3}+5 x^{2}-2 x+4$
D) $x^{4}-7 x^{2}-10 x-4$
E) none of these
21. Solve the given linear system for a and b. Then use those values to find c, where $c=a b^{2}$

$$
\left\{\begin{array}{l}
a+b=4 \\
a-2 b=7
\end{array}\right.
$$

A) $c=-25$
B) $c=-5$
C) $c=5$
D) $c=25$
E) none of these
22. If $a \bigcirc b=(a+b)^{2}-a b$, find $x \odot 1$.
A) $x^{3}+x+1$
B) $x^{2}-x+1$
C) $x^{2}+1$
D) $x^{2}-1$
E) $x^{3}+2 x+1$
23. The school bookstore sells notebooks at a price of two for five dollars and a package of ink pens for two dollars. Eight items are sold for nineteen dollars. If N is the number of notebooks and P is the number of packages of pens, which system of equations describes this purchase?
A) $\left\{\begin{array}{c}2 N+P=8 \\ 2.5 N+2 P=19\end{array}\right.$
B) $\left\{\begin{array}{c}N+P=8 \\ 7(N+P)=19\end{array}\right.$
C) $\left\{\begin{aligned} N+P & =8 \\ 5 N+2 P & =19\end{aligned}\right.$
D) $\left\{\begin{array}{c}N+P=\mathbf{8} \\ 2.5 N+2 P=19\end{array}\right.$
E) none of these
24. If you are travelling at $85 \mathrm{ft} / \mathrm{sec}$, approximately how fast are you going in miles per hour? (note: $5280 \mathrm{ft}=1 \mathrm{mile}$)
A) $\mathbf{1 7 \mathrm { mph }}$
B) 39 mph
C) 45 mph
D) 58 mph
E) 91 mph
25. If $f(x)=x^{3}-x^{2}+4$, find $f(2 \sqrt{3})$.
A) $16 \sqrt{3}$
B) $24 \sqrt{3}$
C) $32 \sqrt{3}$
D) $4+15 \sqrt{3}$
E) $-8+24 \sqrt{3}$
26. Solve the system of equations:
$\left\{\begin{array}{l}\frac{3}{5} x+\frac{4}{5} y=5 \\ x-\frac{2}{3} y=\frac{19}{3}\end{array}\right.$
A) $(3,-5)$
B) $(5,5)$
C) $\left(\frac{43}{7}, \frac{33}{7}\right)$
D) $(7,1)$
E) $(9,4)$
27. Nick and Rhonda are building a square fish pond in their backyard. They wish to put a 2 -foot wide brick border around the outside so that the pond plus the border is in the shape of a square. If the total area of the border and the fish pond is 196 square feet, find the dimensions of one side of the fish pond.
A) 6 feet
B) 10 feet
C) 12 feet
D) 16 feet
E) 18 feet
28. Solve the equation: $\sqrt{r^{2}-5 r+13}-2=r$
A) $[-1]$
B) [1]
C) $\left\{\frac{11}{5}\right\}$
D) \emptyset
E) none of these
29. Tickets for a firemen's ball are $\$ 25$ per person or $\$ 40$ per couple. Assume x represents the number of tickets for singles and y represents the number of tickets for couples. If the goal is to sell at least $\$ 4800$ worth of tickets, which inequality best models that goal?
A) $25 x+40 y>4800$
B) $25 x+80 y>4800$
C) $25 x+40 y \geq 4800$
D) $25 x+80 y \geq 4800$
E) none of these
30. Simplify: $\sqrt[3]{81 a^{5} b^{3}}+\sqrt[3]{24 a^{6} b^{2}}$
A) $\left(3 a b^{2}+2 a^{2}\right)^{2} \sqrt[3]{3 b^{2}}$
B) $\sqrt[5]{105 a^{9} b^{10}}$
C) $3 a b^{2}+2 a^{2}$
D) $a^{2} b^{8} \sqrt[3]{105 b}$
E) $3 b^{2}\left(\sqrt[3]{3 a b^{2}}+\sqrt[3]{2 a^{2}}\right)$
31. Solve the equation and determine the sum of the solutions: $x^{\mathbf{3}}-x^{2}=\mathbf{4 x}-\mathbf{4}$
A) -1
B) 0
C) 1
D) 4
E) none of these
32. Below is a stem and leaf plot. Which two values for this data are the same?

0	8			
1	3	7	7	9
2	2	6	8	
3	0	2	2	2

A) mean and median
B) mean and mode
C) mean and range
D) median and mode
E) median and range
33. If $f(x)=x^{2}-x+3$, find $f(x-2)$.
A) $x^{2}-x+1$
B) $x^{2}-x-3$
C) $x^{2}-5 x+5$
D) $x^{2}-5 x+9$
E) $x^{2}+3 x+5$
34. What is the domain of the relation $x=y^{2}-\mathbf{5}$?
A) $[x \mid x \neq-5)$
B) $[x \mid x \neq 5]$
C) $\{x \mid x \geq-5\}$
D) $[x \mid-2 \leq x \leq 2)$
E) $[x \mid-5 \leq x \leq 5]$

For the remainder of the test, assume all denominators to be non-zero.

35. Solve for $x: 2 x y+5 z=3-4 x z+8 x y$
A) $x=\frac{5 z-3}{6 y-4 z}$
B) $x=\frac{5 z+4 x z-3}{6 y}$
C) $x=\frac{5 z-3}{2 y z}$
D) $x=\frac{5 z-3}{4 y z-2 y}$
E) none of these
36. Calculate the slope of the line through points (a, h) and $(a+h, a)$, where $h \neq 0$.
A) $-a$
B) $a-1$
C) $\frac{h-a}{h}$
D) $\frac{a-h}{h}$
E) $\frac{h}{a-h}$
37. Write the rational expression in lowest terms:
$\frac{6+x-x^{2}}{x^{2}+x-12}$
A) $-\frac{1}{2}$
B) $-\frac{x+2}{x+4}$
C) $\frac{x+2}{x+4}$
D) $\frac{x+3}{x+6}$
E) $\frac{3-x}{x+6}$
38. Simplify:
$\frac{24 h^{2} k+56 h k^{2}-28 h k}{16 h^{2} k^{2}}$
A) $\frac{3}{2 k}+\frac{7}{2 h}-\frac{7}{4 h k}$
B) $\mathbf{3} k+56 h-\mathbf{1 4 h k}$
C) $\frac{3 k}{2}+\frac{7 h}{2}-\frac{7 h k}{4}$
D) $\frac{3+56 h k^{2}-28 h k}{2 k}$
E) none of these
39. Multiply and divide as indicated, then write the rational expression in lowest terms:
$\frac{9 x^{2}-16}{x^{2}+x-42} \times \frac{x^{2}+5 x-14}{3 x^{2}-10 x+8} \div \frac{3 x^{2}+x-4}{6-x}$
A) $-(x+1)$
B) $-1+x$
C) $\frac{-1}{x-1}$
D) $\frac{-1}{1-x}$
E) none of these
40. Solve:
$\frac{5 a+2}{2 a}=\frac{18}{a+4}$
A) $\left\{\frac{2}{31}, \frac{4}{35}\right\}$
B) $\left\{\frac{5}{4}, 2\right\}$
C) $\left\{\frac{1}{5}\right\}$
D) $\left\{\frac{2}{5}, 4\right\}$
E) $\left\{\frac{4}{5}, 2\right\}$
